
Memory Deduplication for 
Serverless Computing with Medes

Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, Aditya Akella



Serverless – Introduction

Developer

Cloud

Code

Client
Triggers

λ λ

λ



Serverless – Deep Dive

What exactly happens when a function is invoked on a serverless platform?

Cloud Node

λ

Execution Environment
Spawn a new 

sandbox
Initialize

runtime, libraries
Download
User code

Cold Start
(800ms – 2s)

Sandbox paused in memory
Resume on invocation

Warm Start
(10 – 20ms)

St
ar

tu
p

La
te

n
cy

Resource Cost

Keeping warm sandboxes is prohibitively memory expensive!



Serverless – Existing Techniques

• Fixed (AWS) or Adaptive (Hybrid Histogram(ATC20)) keep-alive durations

• Provision sandbox resources in anticipation of future invocations (ATC20, SoCC20)

Erratic serverless workloads are difficult to generalize!

Cold starts still significantly slower than warm starts, or sacrifice isolation

Impose constraining trade-
off with no flexibility!

St
ar

tu
p

La
te

n
cy

Resource Cost

• Snapshot-restore techniques (Catalyzer(ASPLOS20), SEUSS(EuroSys20))

Optimal



Key Insight

At any point, several “warm” sandboxes are in memory

λ
λ

0

20

40

60

80

100

64 128 256 512 1024 4096

Chunk Size

Duplication Percent

λ

λ
λ



Key Insight

At any point, several “warm” sandboxes are in memory

λ
λ

Memory redundancy can be exploited to reduce sandbox footprints

0

20

40

60

80

100

64 128 256 512 1024 4096

Chunk Size

Duplication Percent

Duplication due to common runtime and libraries

λ

λ' λ
λ



Reusable Sandbox Chunks

λ

Warm 
Sandbox

Memory 
Checkpoint

Checkpoint

Deduplicated 
Memory Checkpoint

Memory 
Checkpoint

λ

Running 
Sandbox

Restore

Dedup State

Dedup Start

Already present chunks 
can be “re-used”.



Dedup Starts

λ

Running 
Sandbox

Spawn a new 
sandbox

λ

Paused 
environment

λλ

Identify duplicate chunks

Remove duplicates

Dedup Start
(200-300ms)

Cold Start
(800ms – 2s)

Warm Start
(10 – 20ms)

Deduplication

λ
λ

λ

λ' λ
λ

λ λ
λ λ

St
ar

tu
p

La
te

n
cy

Resource Cost

Optimal

Policy



Medes – System Design

Design Goals

Exploit redundancy across nodes

Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes Maintain a global view of the cluster

Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Medes System Design – Global View

Node 1

λ
λ

Node 2

λ
λ

Node 3

λ
λ

Dedup Controller

Fingerprint Registry to 
keep track of RSCs globally

Dedup Agent Dedup Agent Dedup Agent Manages containers on machine

RDMA RDMA RDMA

Policy Module to manage 
sandboxes globally



Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes Maintain global view of the cluster

• Needs to be computationally lightweight
• And have low metadata overhead

Two Tier Architecture

Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Efficient Redundancy Identification

Dedup Controller Fingerprint
Registry

~10000 pages per sandbox, ~4000 
chunks per page, ~100 containers
= 4 Billion entries!

Sandbox

λ Decouple redundancy 
identification and elimination 

granularity

40 Million chunks 4 Billion entries

Few representative chunks in a page are sufficient

Page to be 
deduplicated

64 chunks (64B)
* as it gives highest redundancy

Identification

Store as patch 
Elimination

*

*

Identified base page



Efficient Redundancy Identification

Dedup Controller Fingerprint
Registry

Sandbox
Page

Base Page

Use value sampling – choose only 
those chunks that have the last 
byte to be a particular marker.Stored

Collision indicates 
tentative duplicate

40

45

50

55

60

Fixed Offset
Sampling

Value sampling

Percent Duplication
Value sampled fingerprinting



Scalable Redundancy Identification

Node 1

λ
λ

Node 2

λ
λ

Node 3

λ
λ

Dedup Controller

Dedup Agent Dedup Agent Dedup Agent

RDMA RDMA RDMA

Fingerprint
Registry

Scalability Bottleneck!



Scalable Redundancy Identification

Node 1

λ
λ

Node 2

λ
λ

Node 3

λ
λ

Dedup Controller

Dedup Agent Dedup Agent Dedup Agent

RDMA RDMA RDMA

Fingerprint
Registry

λλ

Only chunks from Base 
Sandboxes are saved in 

fingerprint registry.

Scalability Bottleneck!

Same!

λ Base Sandboxes



Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes

Efficient and scalable redundancy identification

Maintain global view of the cluster

• Needs to be computationally lightweight
• And have low metadata overhead

Two Tier Architecture

Value sampled fingerprints, decouple redundancy 
granularity and select base containers

Dedup Starts should be much faster than cold startsFast Dedup sandbox restores

Flexibility in navigating trade-offs



Fast Dedup Sandbox Restores

• Time consuming steps of sandbox restore performed right at deduplication 
[Catalyzer(ASPLOS20)]

Memory 
State

λ

Running 
Sandbox

Partial Restore
right after 

Deduplication

Dedup State Dedup Start

At sandbox start-up

Namespace creation
Process Tree creation

fork() system calls

Base Pages

Read base pages

Information present locally



Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes

Efficient and scalable redundancy identification

Maintain global view of the cluster

• Needs to be computationally lightweight
• And have low metadata overhead

Two Tier Architecture

Value sampled fingerprints, decouple redundancy 
granularity and select base containers

Construct policy that can deduplicate 
containers as per requirement

Fast Dedup sandbox restores

Flexibility in navigating trade-offs

Dedup Starts should be much faster than cold starts



Medes – Policy

• Allow operators run their platform in two configurations:

Latency 
Bound

Cluster 
Memory Limit

Minimize 
Memory Usage

Minimize 
Startup Latency

• Latency Bound
• Cluster Memory Limit

Constraints

• Minimize Memory Usage
• Minimize Startup Latency

Objectives
λ

λ
λ

λ

λ
λ

λ
λ

W = ? D = ?

Can be modeled as a simple ILP!



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation - Setup

• Configuration
• Controller – One xl170 node on Cloudlab (64GB RAM)

• Nodes – Nineteen xl170 nodes, with 10Gbps NIC
• Software memory constraint applied during experiments

• Workloads
• One hour production traces of various applications released by Microsoft Azure

• Functions from the FunctionBench benchmark suite



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Improved end-to-end latencies

• Tail latencies are improved by a factor of 1-2.25X (1.3X on average).

• Cold starts are reduced up to 1.85X and 3.9X against fixed and adaptive policies.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

99.9p End-to-end Latencies

Fixed Keep-Alive Adaptive Keep-Alive

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

99.9p End-to-end Latencies

Fixed Keep-Alive Adaptive Keep-Alive Medes

0

100

200

300

400

500

600

700

800

900

No. of Cold Starts

Fixed Keep-Alive Adaptive Keep-Alive Medes

2.25X

1.00X

1.85X

3.9X



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Medes under Memory Pressure

The performance benefits increase under memory pressure. 

• Cold starts reduced by 40.6% and 52% against fixed and adaptive keep-alive.

• Tail latencies are improved by a factor of up to 3.8X

500

1000

1500

2000

2500

3000

3500

No Memory Pressure Memory Pressure

No. of Cold Starts

Fixed Keep-Alive Adaptive Keep-Alive Medes

40.6%

52%

0

1000

2000

3000

4000

5000

6000

7000

99.9p End-to-end Latencies

Fixed Keep-Alive Adaptive Keep-Alive Medes



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Medes Memory Savings

• Medes can reduce 16-58% of the function memory state.



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Flexibility achieved by Medes

Best performing keep-alive Large keep-alive leads to many evictions

Medes performs better than
any keep alive

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Keep-Alive
5 min

Keep-Alive
10 min

Keep-Alive
15 min

Keep-Alive
20 min

Medes

No. of Cold Starts

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Keep-Alive
5 min

Keep-Alive
10 min

Keep-Alive
15 min

Keep-Alive
20 min

Medes

No. of Cold Starts



Summary

• Medes can exploit sub-page level redundancy containers across a 
serverless platform.

• Medes uses:
• Decoupling of redundancy identification and elimination granularities

• Value-sampled fingerprints to identify similar pages

• Fast sandbox restores

• Flexible policy for sandbox management

• Medes can provide improved end-to-end latencies, memory usage.

• The benefits are enhanced for memory pressure scenarios.


