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Serverless – Deep Dive

What exactly happens when a function is invoked on a serverless platform?

Cloud Node
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Execution Environment
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(800ms – 2s)

Sandbox paused in memory
Resume on invocation
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Keeping warm sandboxes is prohibitively memory expensive!



Serverless – Existing Techniques

• Fixed (AWS) or Adaptive (Hybrid Histogram(ATC20)) keep-alive durations

• Provision sandbox resources in anticipation of future invocations (ATC20, SoCC20)

Erratic serverless workloads are difficult to generalize!

Cold starts still significantly slower than warm starts, or sacrifice isolation

Impose constraining trade-
off with no flexibility!
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• Snapshot-restore techniques (Catalyzer(ASPLOS20), SEUSS(EuroSys20))

Optimal



Key Insight

At any point, several “warm” sandboxes are in memory
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Key Insight

At any point, several “warm” sandboxes are in memory
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Memory redundancy can be exploited to reduce sandbox footprints
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Reusable Sandbox Chunks
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Dedup Starts
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Medes – System Design

Design Goals

Exploit redundancy across nodes

Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes Maintain a global view of the cluster

Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Medes System Design – Global View

Node 1
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Dedup Controller

Fingerprint Registry to 
keep track of RSCs globally

Dedup Agent Dedup Agent Dedup Agent Manages containers on machine

RDMA RDMA RDMA

Policy Module to manage 
sandboxes globally



Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes Maintain global view of the cluster

• Needs to be computationally lightweight
• And have low metadata overhead

Two Tier Architecture

Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Efficient Redundancy Identification

Dedup Controller Fingerprint
Registry

~10000 pages per sandbox, ~4000 
chunks per page, ~100 containers
= 4 Billion entries!

Sandbox

λ Decouple redundancy 
identification and elimination 

granularity

40 Million chunks 4 Billion entries

Few representative chunks in a page are sufficient

Page to be 
deduplicated

64 chunks (64B)
* as it gives highest redundancy

Identification

Store as patch 
Elimination

*

*

Identified base page



Efficient Redundancy Identification

Dedup Controller Fingerprint
Registry

Sandbox
Page

Base Page

Use value sampling – choose only 
those chunks that have the last 
byte to be a particular marker.Stored

Collision indicates 
tentative duplicate
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Scalable Redundancy Identification

Node 1
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Scalability Bottleneck!



Scalable Redundancy Identification
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Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes

Efficient and scalable redundancy identification

Maintain global view of the cluster

• Needs to be computationally lightweight
• And have low metadata overhead

Two Tier Architecture

Value sampled fingerprints, decouple redundancy 
granularity and select base containers

Dedup Starts should be much faster than cold startsFast Dedup sandbox restores

Flexibility in navigating trade-offs



Fast Dedup Sandbox Restores

• Time consuming steps of sandbox restore performed right at deduplication 
[Catalyzer(ASPLOS20)]
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Medes – System Design

Design Goals Challenges

Exploit redundancy across nodes

Efficient and scalable redundancy identification

Maintain global view of the cluster

• Needs to be computationally lightweight
• And have low metadata overhead

Two Tier Architecture

Value sampled fingerprints, decouple redundancy 
granularity and select base containers

Construct policy that can deduplicate 
containers as per requirement

Fast Dedup sandbox restores

Flexibility in navigating trade-offs

Dedup Starts should be much faster than cold starts



Medes – Policy

• Allow operators run their platform in two configurations:

Latency 
Bound

Cluster 
Memory Limit

Minimize 
Memory Usage

Minimize 
Startup Latency

• Latency Bound
• Cluster Memory Limit

Constraints

• Minimize Memory Usage
• Minimize Startup Latency
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Can be modeled as a simple ILP!



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation - Setup

• Configuration
• Controller – One xl170 node on Cloudlab (64GB RAM)

• Nodes – Nineteen xl170 nodes, with 10Gbps NIC
• Software memory constraint applied during experiments

• Workloads
• One hour production traces of various applications released by Microsoft Azure

• Functions from the FunctionBench benchmark suite



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Improved end-to-end latencies

• Tail latencies are improved by a factor of 1-2.25X (1.3X on average).

• Cold starts are reduced up to 1.85X and 3.9X against fixed and adaptive policies.
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Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Medes under Memory Pressure

The performance benefits increase under memory pressure. 

• Cold starts reduced by 40.6% and 52% against fixed and adaptive keep-alive.

• Tail latencies are improved by a factor of up to 3.8X
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Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Medes Memory Savings

• Medes can reduce 16-58% of the function memory state.



Evaluation

• Can Medes provide improved end-to-end latencies?

• How does Medes perform under memory pressure situations?

• Can Medes help reduce the overall memory footprints?

• Can tuning fixed keep-alive policies achieve the same performance-memory 
tradeoffs as Medes?



Evaluation – Flexibility achieved by Medes

Best performing keep-alive Large keep-alive leads to many evictions

Medes performs better than
any keep alive
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Summary

• Medes can exploit sub-page level redundancy containers across a 
serverless platform.

• Medes uses:
• Decoupling of redundancy identification and elimination granularities

• Value-sampled fingerprints to identify similar pages

• Fast sandbox restores

• Flexible policy for sandbox management

• Medes can provide improved end-to-end latencies, memory usage.

• The benefits are enhanced for memory pressure scenarios.


