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Serverless — Introduction
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Serverless — Deep Dive

What exactly happens when a function is invoked on a serverless platform?
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Spawn a new Initialize Download Execution Environment
Cloud Node sandbox runtime, libraries User code
Cold Start Sandbox paused in memory
(800ms — 2s) Resume on invocation

Startup Latency

Keeping warm sandboxes is prohibitively memory expensive!

Resource Cost



Serverless — Existing Technigues

* Fixed (AWS) or Adaptive (Hybrid Histogram(ATczo)) keep-alive durations
* Provision sandbox resources in anticipation of future invocations xrc20 socc20)

Erratic serverless workloads are difficult to generalize!

* Snapshot-restore techniques (Catalyzer asp| 9520, SEUSS(£yrosys20))

Cold starts still significantly slower than warm starts, or sacrifice isolation
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Key Insight
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Key Insight

Ill

At any point, several “warm” sandboxes are in memory
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Duplication due to common runtime and libraries

Memory redundancy can be exploited to reduce sandbox footprints




Reusable Sandbox Chunks
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Warm Memory Deduplicated
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Already present chunks !
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Dedup Starts

(10 — 20ms)

Warm Start

Paused
enwronment

Identify duplicate chunks

Spawn anew  (800ms — 2s) Running
sandbox Sandbox O
! O
Dedup Start Policy
(200-300ms)
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Medes — System Design

Design Goals

Exploit redundancy across nodes
Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs



Medes — System Design

Design Goals Challenges

Exploit redundancy across nodes Maintain a global view of the cluster



Medes System Design — Global View

Fingerprint Registry to

=
wmo | keep track of RSCs globally
éa Policy Module to manage

sandboxes globally

Manages containers on machine




Medes — System Design

Design Goals Challenges

Two Tier Architecture

Efficient and scalable redundancy identification * Needs to be computationally lightweight

* And have low metadata overhead



Efficient Redundancy Identification

..’ _ | ~10000 pages per sandbox, ~4000
— Flnge.rprlnt chunks per page, ~100 containers
ey  Registry | =4 Billion entries!

40 Million chunks » 4 Billion entries Decouple redundancy
identification and elimination
Sandbox granularity
> > 1 -
Identification
Page to be 64 chunks (64B)
deduplicated * as it gives highest redundancy Store as patch
Elimination
C 2PIesSc C DdC C C

* |dentified base page



Efficient Redundancy Identification
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Registry

Sandbox Collision indicates Percent Duplication : __
Page tentative duplicate €0 Value sampled fingerprinting
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byte to be a particular marker.
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Scalable Redundancy ldentification
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Scalable Redundancy ldentification

Same!
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Fingerprint
Registry

Scalability Bottleneck!

Base Sandboxes

Only chunks from Base

Sandboxes are saved in
fingerprint registry.




Medes — System Design

Design Goals Challenges

Two Tier Architecture

Value sampled fingerprints, decouple redundancy
granularity and select base containers

Fast Dedup sandbox restores Dedup Starts should be much faster than cold starts




Fast Dedup Sandbox Restores

* Time consuming steps of sandbox restore performed right at deduplication
[Catalyzer( ASPLOSZO)]

At sandbox start-up

G

Memory Running
State Sandbox

Partial Restore

m right after

3 Deduplication

Namespace creation
Process Tree creation
fork() system calls
Dedup State Dedup Start

Read base pages
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Medes — System Design

Design Goals Challenges

Two Tier Architecture

Value sampled fingerprints, decouple redundancy
granularity and select base containers

Flexibility in navigating trade-offs Construct policy that can deduplicate
containers as per requirement




Medes — Policy

* Allow operators run their platform in two configurations:

Latency a Minimize Cluster # a Minimize

Bound a Memory Usage Memory Limit a Startup Latency

e Latency Bound

*  Minimize Memory Usage
* Cluster Memory Limit

* Minimize Startup Latency

Can be modeled as a simple ILP!



Evaluation

Can Medes provide improved end-to-end latencies?
How does Medes perform under memory pressure situations?
Can Medes help reduce the overall memory footprints?

Can tuning fixed keep-alive policies achieve the same performance-memory
tradeoffs as Medes?



Evaluation - Setup

e Configuration
e Controller —One xI170 node on Cloudlab (64GB RAM)

* Nodes — Nineteen xl170 nodes, with 10Gbps NIC
* Software memory constraint applied during experiments

 Workloads

* One hour production traces of various applications released by Microsoft Azure
* Functions from the FunctionBench benchmark suite



Evaluation

* Can Medes provide improved end-to-end latencies?



Evaluation — Improved end-to-end latencies
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* Tail latencies are improved by a factor of 1-2.25X (1.3X on average).

* Cold starts are reduced up to 1.85X and 3.9X against fixed and adaptive policies.



Evaluation

 How does Medes perform under memory pressure situations?



Evaluation — Medes under Memory Pressure
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The performance benefits increase under memory pressure.
* Cold starts reduced by 40.6% and 52% against fixed and adaptive keep-alive.

 Tail latencies are improved by a factor of up to 3.8X



Evaluation

* Can Medes help reduce the overall memory footprints?



Evaluation — Medes

Memory Savings

Function Environment
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* Medes can reduce 16-58% of the function memory state.




Evaluation

e Can tuning fixed keep-alive policies achieve the same performance-memory
tradeoffs as Medes?



Evaluation — Flexibility achieved by Medes
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summary

* Medes can exploit sub-page level redundancy containers across a
serverless platform.

* Medes uses:
* Decoupling of redundancy identification and elimination granularities
* Value-sampled fingerprints to identify similar pages
* Fast sandbox restores
* Flexible policy for sandbox management

* Medes can provide improved end-to-end latencies, memory usage.
* The benefits are enhanced for memory pressure scenarios.



