Memory Deduplication for
Serverless Computing with Medes

Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, Aditya Akella

[) The Uni of Texas at Austin oo .
\'s"/ ComputLr Scunce "@" Computer Sciences

Colleae ge)f Natural Science School of Computer, Data & Information Sciences

Serverless — Introduction

‘ Code
Developer
o2 o
dh

Client

A

Triggers

Cil g

Cloud

LRV Whn

Serverless — Deep Dive

What exactly happens when a function is invoked on a serverless platform?

g .)) &l

Spawn a new Initialize Download Execution Environment
Cloud Node sandbox runtime, libraries User code
Cold Start Sandbox paused in memory
(800ms — 2s) Resume on invocation

Startup Latency

Keeping warm sandboxes is prohibitively memory expensive!

Resource Cost

Serverless — Existing Technigues

* Fixed (AWS) or Adaptive (Hybrid Histogram(ATczo)) keep-alive durations
* Provision sandbox resources in anticipation of future invocations xrc20 socc20)

Erratic serverless workloads are difficult to generalize!

* Snapshot-restore techniques (Catalyzer asp| 9520, SEUSS(£yrosys20))

Cold starts still significantly slower than warm starts, or sacrifice isolation

ol e
C
2
3;_ Impose constraining trade-
2 off with no flexibility!
©
A
4 Optimal

Resource Cost

Key Insight

Il(

At any point, severa

-
m-]
-

-

100

80

60

40

20

Duplication Percent

64 128 256 512 1024 4096
Chunk Size

warm” sandboxes are in memory

@ -8 &
I o o & &
» & <\Q(° o S S § F
¥ FFE & &FF S

AuthEnc -
MapReduce -
HTTPServe -

LinAlg - 0.85
ImagePro -

VideoPro -
FeatureGen -
Model Train -
ModelServe -

Key Insight

Ill

At any point, several “warm” sandboxes are in memory

Qi Duplication Percent
Vanilla
100 AuthEnc
HTTPServe
60 LinAlg

ImagePro
40
VideoPro
Q i 20 FeatureGen - 0.84
Model Train JEURIERENIN-

ModelServe ORCTARIR: TN ¥:¥)
- 64 128 256 512 1024 4096
Chunk Size
0.64 .

Duplication due to common runtime and libraries

Memory redundancy can be exploited to reduce sandbox footprints

Reusable Sandbox Chunks

Checkpointt _hm_h' X m
m j Dedup State

Warm Memory Deduplicated
Sandbox Checkpoint Memory Checkpoint
Restore

Already present chunks !

can be “re-used”. m
e
A
1100 - Dedup Start

Memory Running
Checkpoint Sandbox

Dedup Starts

(10 — 20ms)

Warm Start

Paused
enwronment

Identify duplicate chunks

Spawn anew (800ms — 2s) Running
sandbox Sandbox O
! O
Dedup Start Policy
(200-300ms)
Deduplication
™
o e .
c Remove duplicates
e
©
—
Q
S
jut
©
A e
< Optimal o

Resource Cost

'Uj

-

-
o

-
-

Medes — System Design

Design Goals

Exploit redundancy across nodes
Efficient and scalable redundancy identification

Fast Dedup sandbox restores

Flexibility in navigating trade-offs

Medes — System Design

Design Goals Challenges

Exploit redundancy across nodes Maintain a global view of the cluster

Medes System Design — Global View

Fingerprint Registry to

=
wmo | keep track of RSCs globally
éa Policy Module to manage

sandboxes globally

Manages containers on machine

Medes — System Design

Design Goals Challenges

Two Tier Architecture

Efficient and scalable redundancy identification * Needs to be computationally lightweight

* And have low metadata overhead

Efficient Redundancy Identification

..’ _ | ~10000 pages per sandbox, ~4000
— Flnge.rprlnt chunks per page, ~100 containers
ey Registry | =4 Billion entries!

40 Million chunks » 4 Billion entries Decouple redundancy
identification and elimination
Sandbox granularity
> > 1 -
Identification
Page to be 64 chunks (64B)
deduplicated * as it gives highest redundancy Store as patch
Elimination
C 2PIesSc C DdC C C

* |dentified base page

Efficient Redundancy Identification

~
U.’ Fingerprint
| —

Registry

Sandbox Collision indicates Percent Duplication : __
Page tentative duplicate €0 Value sampled fingerprinting

55

50 Use value sampling — choose only

those chunks that have the last
byte to be a particular marker.

45

Stored 40

Base Page
8 Fixed Offset Value sampling

Sampling

Scalable Redundancy ldentification
- P

— Fingerprint

Scalability Bottleneck!

U- Registry

;'i Node 1 ;'i Node 2 ;'i Node 3

Scalable Redundancy ldentification

Same!

=
-—

Fingerprint
Registry

Scalability Bottleneck!

Base Sandboxes

Only chunks from Base

Sandboxes are saved in
fingerprint registry.

Medes — System Design

Design Goals Challenges

Two Tier Architecture

Value sampled fingerprints, decouple redundancy
granularity and select base containers

Fast Dedup sandbox restores Dedup Starts should be much faster than cold starts

Fast Dedup Sandbox Restores

* Time consuming steps of sandbox restore performed right at deduplication
[Catalyzer(ASPLOSZO)]

At sandbox start-up

G

Memory Running
State Sandbox

Partial Restore

m right after

3 Deduplication

Namespace creation
Process Tree creation
fork() system calls
Dedup State Dedup Start

Read base pages

»
»

y

D < Information present locally

Base Pages

Medes — System Design

Design Goals Challenges

Two Tier Architecture

Value sampled fingerprints, decouple redundancy
granularity and select base containers

Flexibility in navigating trade-offs Construct policy that can deduplicate
containers as per requirement

Medes — Policy

* Allow operators run their platform in two configurations:

Latency a Minimize Cluster # a Minimize

Bound a Memory Usage Memory Limit a Startup Latency

e Latency Bound

* Minimize Memory Usage
* Cluster Memory Limit

* Minimize Startup Latency

Can be modeled as a simple ILP!

Evaluation

Can Medes provide improved end-to-end latencies?
How does Medes perform under memory pressure situations?
Can Medes help reduce the overall memory footprints?

Can tuning fixed keep-alive policies achieve the same performance-memory
tradeoffs as Medes?

Evaluation - Setup

e Configuration
e Controller —One xI170 node on Cloudlab (64GB RAM)

* Nodes — Nineteen xl170 nodes, with 10Gbps NIC
* Software memory constraint applied during experiments

 Workloads

* One hour production traces of various applications released by Microsoft Azure
* Functions from the FunctionBench benchmark suite

Evaluation

* Can Medes provide improved end-to-end latencies?

Evaluation — Improved end-to-end latencies

99.9p End-to-end Latencies No. of Cold Starts
5000 900
4500 800 3.9X i i
4000 700 i I
3500 600 ! i
3000 500 | i
1
2500 1.85X 1 :
2000 400 r---5 i i
1500 2.25X 300 — 1 P
1000 --"' 200 : : : :
|| || I| “ { (]} Il ok 10
0 1i mm o | “ I_____: II | (N
\\’b <2Ko \’b <2(o 9© & S & b"’ &
) (:) «2
& , @ § o@ & »\° £ &L & @ K @ F &
@ A\ @ e X & N\ @ Y Q> N S
A\ ®®Q ‘é‘& ((Q/’b Q\é @O AN ®@Q \é\\ <<Q,’b Q\é @0
M Fixed Keep-Alive m Adaptive Keep-Alive Medes M Fixed Keep-Alive m Adaptive Keep-Alive Medes

* Tail latencies are improved by a factor of 1-2.25X (1.3X on average).

* Cold starts are reduced up to 1.85X and 3.9X against fixed and adaptive policies.

Evaluation

 How does Medes perform under memory pressure situations?

Evaluation — Medes under Memory Pressure

No. of Cold Starts 99.9p End-to-end Latencies
3500
7000

6000

529

2500 % 5000

4000

40.6%

2000 0 3000
1500 2000 II

o i, 1l II |I |
1000 l [I
500 \\’b Qko Qko

@ \‘?

&(b
\> & &
No Memory Pressure Memory Pressure \@’b A\b o&’/

K\

3000

o

N & o &
v O
@’?S S & S
B Fixed Keep-Alive H Adaptive Keep-Alive ® Medes

M Fixed Keep-Alive M Adaptive Keep-Alive M Medes

The performance benefits increase under memory pressure.
* Cold starts reduced by 40.6% and 52% against fixed and adaptive keep-alive.

 Tail latencies are improved by a factor of up to 3.8X

Evaluation

* Can Medes help reduce the overall memory footprints?

Evaluation — Medes

Memory Savings

Function Environment

Percent Savings

T 11 "t.ﬁMB —_ iy
Vanilla Tme = 27-06%
LinAlg 10248 = 32.81%
ImagePro]215;_34'5'[.5;1'? = 43.03%

. 12 22MB _ ar
VideoPro ~3EMB 25.46%

p : 5. 10MB _ e
MapReduce oMB = 19-9%
HTMLServe SiVE = 44.30%

) 4.79MB _ "
AuthEnc 35 aME — 21-48%
FeatureGen % = 38.89%
RNNModel 3Z23MB _158.03%

" 26.33MB _ -
ModelTrain E7.5MB 30.09%

* Medes can reduce 16-58% of the function memory state.

Evaluation

e Can tuning fixed keep-alive policies achieve the same performance-memory
tradeoffs as Medes?

Evaluation — Flexibility achieved by Medes

No. of Cold Starts

4500
4000
3500

3000
2500
2000
1500 Medes performs better than
1000 I any keep alive
500
0

Keep-Alive Keep-Alive Keep-Alive Keep-Alive Medes
5 min 10 min 15 min 20 min

Best performing keep-alive / \ Large keep-alive leads to many evictions

summary

* Medes can exploit sub-page level redundancy containers across a
serverless platform.

* Medes uses:
* Decoupling of redundancy identification and elimination granularities
* Value-sampled fingerprints to identify similar pages
* Fast sandbox restores
* Flexible policy for sandbox management

* Medes can provide improved end-to-end latencies, memory usage.
* The benefits are enhanced for memory pressure scenarios.

