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And learned systems
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AlphaGo AlphaFold CoPilotChatGPT AlphaProof

Does using ML in the OS make sense?

Processor

Network File and Storage

Memory

Operating System

OS is subject to diverse applications and environments, 

necessitating dynamic and adaptive policies!

Exploit the capability of ML of using rich features 

and take predictive actions!

Cluster Scheduling
[Decima (SIGCOMM’20)]

Query Optimization
[Neo (VLDB’19), Bao 

(SIGMOD’22)]

Configuration Tuning
[SelfTune (NSDI’23), MLOS 

(VLDB’24)]
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“Keep Your Damn Models Out of My Kernel!”

Unsafe decisions because of 

incomplete training/unseen inputs

Feature 

Vector Unsafe

Decision

Inputs Output

Inputs Output

Performance overheads of using 

learning-based policies

Opaque decisions undermine 

reproducibility and compromise security.

Policy ?



How I learned to stop worrying 
and love learned OS policies

Divyanshu Saxena*, Jiayi Chen*, Sujay Yadalam, Yeonju Ro, Rohit Dwivedula, 
Eric Campbell, Aditya Akella, Christopher Rossbach, Michael Swift



Guardrails for OS Policies
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Guardrails for OS Policies

Enable learned policies where beneficial and avoid catastrophic outcomes.
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• Task: Predict whether an I/O access will be slow or fast [LinnOS (OSDI’20)]

• Trained using the latency distribution of current workload.
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A Guardrail Case Study – I/O Latency Predictor

Features

• Latencies of 

recent I/Os

• Number of 
pending I/Os

SSDFast

Slow

Revoke

Kernel

Application I/O access

Workload 

Latencies

Trained 

Model



Detect potential issues by monitoring inputs, outputs and system behavior.
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Detecting When Things Go Wrong

Output
System 

Behavior

LinnOS Policy

Input

Features

Out-of-distribution inputs: 

Workload changes can change the 

fast/slow threshold.

Poor decisions because of noise: 

Model may yield different outputs for 

similar inputs.

Poor end-to-end performance:

Gains of good decisions may be 

negated by model overhead.

𝑓

𝑓 + ϵ Fast?

Slow



Simple detection is not enough ⇒ Automatic recovery when problems arise.
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Recovering from Undesirable Outcomes

Output

Report to log on an 

incorrect prediction.

Replace model with a 

hedging-based heuristic.

Retrain the latency 

prediction model.

Deprioritize kswapd to 

reduce I/O requests.

System 

Behavior

Input

Features

LinnOS Policy
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The Guardrail Abstraction

Description of desired 

behaviors, constraints and 

invariants.

Property

Prescriptions for system 

responses when a property is 

violated

Action

Input

Features

Learning-based 

Policy
System 

Behavior

Example Properties:

• In-distribution inputs

• Robustness to noise

• Better performance 

than default

Example Actions:

• Report

• Replace

• Retrain

• Deprioritize



8

The Guardrail Abstraction

Description of desired 

behaviors, constraints and 

invariants.

Property

Prescriptions for system 

responses when a property is 

violated

Action

Input

Features

Learning-based 

Policy
System 

Behavior

Example Properties:

• In-distribution inputs

• Robustness to noise

• Better performance 

than default

Example Actions:

• Report

• Replace

• Retrain

• Deprioritize



8

The Guardrail Abstraction

Description of desired 

behaviors, constraints and 

invariants.

Property

Prescriptions for system 

responses when a property is 

violated

Action

Input

Features

Learning-based 

Policy
System 

Behavior

Need introspective support to monitor properties 

at run time and take corrective actions.

Example Properties:

• In-distribution inputs

• Robustness to noise

• Better performance 

than default

Example Actions:

• Report

• Replace

• Retrain

• Deprioritize



Providing Support for OS Guardrails
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Output

Policy/Subsystem

High-level interface to 

specify guardrails

Input

Features

System 

Behavior



Guardrail Interface – Specifying Properties
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Properties 

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+ 
〈Trigger〉 ::= TIMER | FUNCTION 
〈Rule〉 ::= 〈Expression〉
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Properties 

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+ 
〈Trigger〉 ::= TIMER | FUNCTION 
〈Rule〉 ::= 〈Expression〉

In-distribution inputs:

At every model invocation, 

check if 𝑖𝑛𝑝𝑢𝑡 ∼ 𝐷𝑡𝑟𝑎𝑖𝑛

Robustness to noise:

At every model invocation,

check if 𝑀 𝑖𝑛𝑝𝑢𝑡 ≈ 𝑀(𝑖𝑛𝑝𝑢𝑡 + 𝛿)

Better performance than default:

At 10 second intervals, check if 
𝑃𝑒𝑟𝑓 𝑀 > 𝑃𝑒𝑟𝑓(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
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RULE TRIGGER



Guardrail Interface – Specifying Actions
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Properties 

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+ 
〈Trigger〉 ::= TIMER | FUNCTION 
〈Rule〉 ::= 〈Expression〉

〈Action〉 ::= REPORT | REPLACE | RETRAIN |
DEPRIORITIZE | <Expression>

Report to a log

𝑅𝑒𝑝𝑜𝑟𝑡(𝑠𝑡𝑎𝑡𝑒, 𝑙𝑜𝑔)
Replace with a heuristic

𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
Retrain the model

𝑅𝑒𝑡𝑟𝑎𝑖𝑛(𝑚𝑜𝑑𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡𝑠)
Deprioritize tasks

𝐷𝑒𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)



〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+ 
〈Trigger〉 ::= TIMER | FUNCTION 
〈Rule〉 ::= 〈Expression〉

〈Action〉 ::= REPORT | REPLACE | RETRAIN |
DEPRIORITIZE | <Expression>

• Rich properties and actions may require states, such as:
• States available in the learned policy,

• States tracked by the rule, e.g., counters, aggregates, etc.

• System metrics, e.g., CPU utilization.
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Guardrail State Store

SAVE(key, value)

LOAD(key)

A lightweight, global state store



• Target policy: I/O device latency predictor in 
LinnOS (OSDI’20)

• Property:

• Rule: False submits should not be greater 
than 5%

• Trigger: Periodically, every 1 second

• Action: Fallback to the default kernel policy.

13

How Guardrails May Help in Practice

SSDFast

Slow

RevokeI/O access

False Submit: The model predicted 

an I/O access to be fast, but it ended 

up as a slow access.
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How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

SSDFast

Slow

RevokeI/O access

False Submit: The model predicted 

an I/O access to be fast, but it ended 

up as a slow access.

Accessed via global 
state store
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How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

if LOAD("ml_enabled") {
// Use LinnOS predictions

}
...
// Update false submit rate
SAVE("false_submit_rate", false_submit_rate)

Changes inside LinnOS code

SSDFast

Slow

RevokeI/O access

+
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How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

if LOAD("ml_enabled") {
// Use LinnOS predictions

}
...
// Update false submit rate
SAVE("false_submit_rate", false_submit_rate)

Changes inside LinnOS code

SSDFast

Slow

RevokeI/O access

Default Linux 

Policy

+
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Open Research Directions

Evolve guardrails as properties or 

actions change.

Low-overhead property tracking, 

when using system-wide features

Seamless guardrail compilation for in-

kernel enforcement.

Managing interference among guardrails 

monitoring different properties

Learned 

Policy

Learned 

Policy 1

Learned 

Policy 2

...and many more



• We propose OS Guardrails—a framework that enables 
safe, effective, and high-impact use of learned policies.

• Guardrails track adherence to a property and allow 
taking corrective actions when violated.

• Preliminary experiments show promising results for the 
proposed interface and design.

• Opens several avenues for research on enabling low-
overhead and flexible guardrails in the OS.
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Summary

Violation

Action

Thank You!


