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Everyone Else is Using ML, Why Aren’t We?

Widespread adoption in other domains Does using ML in the OS make sense?
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necessitating dynamic and adaptive policies!

Exploit the capability of ML of using rich features
and take predictive actions!
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“Keep Your Damn Models Out of My Kernel!

~ Policy N?D
Feature — = t
Vector Unsafe { <1>_}%§{ <I>_} 7 _\}
Decision R I 4
Unsafe decisions because of Opaque decisions undermine
incomplete training/unseen inputs reproducibility and compromise security.

Inputs —>{T_}—> Output ;;;

Inputs % Output X

Performance overheads of using
learning-based policies
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Guardrails for OS Policies




Guardrails for OS Policies

Enable learned policies where beneficial and avoid catastrophic outcomes.




A Guardrail Case Study — 1/0 Latency Predictor

» Task: Predict whether an |/0 access will be slow or fast [LinnOS (OSDI’20)]
 Trained using the latency distribution of current workload.

Workload ‘ Trained
Latencies Model

Application |/0 access —> Revoke
Kernel Features ‘
« Latencies of Slow . .
recent 1/0s

* Number of
pending I/0s

Fast >




Detecting When Things Go Wrong

Detect potential issues by monitoring inputs, outputs and system behavior.

fast/slow threshold.

Workload changes can change the Model may yield different outputs for

similar inputs.

m f > Slow
*
f+e » Fast? I:I I:I[l
Out-of-distribution inputs: Poor decisions because of noise: Poor end-to-end performance:

Gains of good decisions may be
negated by model overhead.
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Recovering from Undesirable Outcomes

Simple detection is not enough = Automatic recovery when problems arise.

—

110

(e 3%

%y

c—
—/)
—
 —
—

Report to log on an
incorrect prediction.

Replace model with a
hedging-based heuristic.

Retrain the latency
prediction model.

Deprioritize kswapd to
reduce I/0 requests.
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The Guardrail Abstraction

Example Properties: Property Example Actions:

* In-distribution inputs Description of desired Prescriptions for system * Report

* Robusthess to noise behaviors, constraints and responses when a property is » Replace

» Better performance invariants. violated * Retrain
than default * Deprioritize
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The Guardrail Abstraction

Example Properties: Property Example Actions:

In-distribution inputs Description of desired Prescriptions for system * Report
Robustness to noise behaviors, constraints and responses when a property is » Replace
Better performance invariants. violated * Retrain
than default * Deprioritize

Learning-based
Features T Policy

System
Behavior

Need introspective support to monitor properties
at run time and take corrective actions.



Providing Support for OS Guardrails

High-level interface to
m specify guardrails

Policy/Subsystem

Input
Features

System
Behavior




Guardrail Interface — Specifying Properties

. ,Z ﬁfr‘}
Properties - o F o
n and Actions -@q

Interface Grammar

(Guardrail) ::= (Property) (Action)+
(Property) = (Trigger)+ (Rule)+
(Trigger) = TIMER | FUNCTION
(Rule) = (Expression)
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Guardrail Interface — Specifying Properties

Properties

n and Actions

Interface Grammar

)i G

(Guardrail) ::= (Property) (Action)+
(Property) = (Trigger)+ (Rule)+
(Trigger) = TIMER | FUNCTION
(Rule) = (Expression)

In-distribution inputs:
At every model invocation,
check if input ~ Dirgin

Robustness to noise:
At every model invocation,
check if M(input) ~ M(input + 6)

Better performance than default:
At 10 second intervals, check if
Perf(M) > Perf (baseline)
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Guardrail Interface — Specifying Properties

Properties

n and Actions

Interface Grammar

D)=y

(Guardrail) ::= (Property) (Action)+
(Property) = (Trigger)+ (Rule)+
(Trigger) = TIMER | FUNCTION
(Rule) = (Expression)

In-distribution inputs:
At every model invocation,
check if input ~ Dirgin

Robustness to noise:
At every model invocation,
check if M(input) ~ M(input + 6)

Better performance than default:
At 10 second intervals, check if
Perf(M) > Perf (baseline)

RULE TRIGGER
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Guardrail Interface — Specifying Actions

n and Actions

(Guardrail) ::
(Property)
(Trigger)
(Rule)
(Action)

1 A
Properties -@q

Interface Grammar

(Property) (Action)+
(Trigger)+ (Rule)+

TIMER | FUNCTION
(Expression)

REPORT | REPLACE | RETRAIN |
DEPRIORITIZE | <Expression>

Report to a log
Report(state,log)

Replace with a heuristic
Replace(model, baseline)

Retrain the model
Retrain(model, inputs)

Deprioritize tasks
Deprioritize(functions)
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Guardrail State Store

* Rich properties and actions may require states, such as:

« States available in the learned policy,
» States tracked by the rule, e.g., counters, aggregates, etc.
« System metrics, e.g., CPU utilization.

Interface Grammar

(Guardrail) ::= (Property) (Action)+

(Property) = (Trigger)+ (Rule)+

(Trigger) = TIMER | FUNCTION

(Rule) = |(Expression)

(Action) = REPORT | REPLACE | RETRAIN |
DEPRIORITIZE | kExpression>

A lightweight, global state store

SAVE (key, value) )

—>o
LOAD (key) - g
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How Guardrails May Help in Practice

« Target policy: 1/0 device latency predictor in
LinnOS (OSDI’20)

* Property:

» Rule: False submits should not be greater
than 5%

» Trigger: Periodically, every 1 second
« Action: Fallback to the default kernel policy.

/0 access —> Revoke

Slow .

Fast=t" SS Dl
~ . .

/ ~

False Submit: The model predicted
an |/0 access to be fast, but it ended
up as a slow access.

13



How Guardrails May Help in Practice

« Target policy: 1/0 device latency predictor in

/0 access —> Revoke

LinnOS (OSDI°20)
* Property:

» Rule: False submits should not be greater
than 5%

Slow

» Trigger: Periodically, every 1 second
« Action: Fallback to the default kernel policy.

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false submit rate <= 0.05 },
action: { ml _enabled = false }

}
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False Submit: The model predicted
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Accessed via global
state store
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How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false submit rate <= 0.05 },
action: { ml_enabled = false }

}

/0O access

—> Revoke
SlOW .lllll ll.
Fast™= SS Dl

==

Changes inside LinnOS code

if LOAD("ml _enabled") {
// Use LinnOS predictions

}

// Update false submit rate
SAVE("false submit rate", false submit rate)
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Open Research Directions

o
{ (¢)(e) Q
o @Fz Learned [2

Policy

Evolve guardrails as properties or
actions change.

LN

om = 5

Seamless guardrail compilation for in-

kernel enforcement.

2 & o
=

Low-overhead property tracking,
when using system-wide features

Learned
Policy 1

Learned [§
Policy 2

Managing interference among guardrails
monitoring different properties

...and many more
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Summary

2N

* We propose OS Guardrails—a framework that enables o @ o A
safe, effective, and high-impact use of learned policies. O

* Guardrails track adherence to a property and allow
taking corrective actions when violated. & Violation

Wt
:Q'\
* Opens several avenues for research on enabling low-

overhead and flexible guardrails in the OS. ‘ Action

16

* Preliminary experiments show promising results for the
proposed interface and design.

Thank You!



