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Abstract
Microservices are foundational to modern distributed appli-
cations, enabling modular design and scalability. However,
they face performance variability due to environmental fac-
tors like workload burstiness, resource contention, and shared
dependencies. Existing microservice controllers, such as au-
toscalers and admission controllers, struggle to ensure good
performance, often causing several Service Level Objective
(SLO) violations. We argue that this is because controller
decision-making is uninformed, lacking guidance about ro-
bustness to environmental factors.

We propose the concept of run-time “performance robust-
ness certificates” (PERCs) to address this limitation. A PERC
provides statistical bounds on tail latencies of specific request
types under a range of environmental perturbations. We show
how to leverage a queueing-theoretic model of microservice
performance to quickly derive actionable PERCs. We intro-
duce Galileo, a framework that integrates PERCs with two
state-of-the-art learned controllers to guide robust actions to-
ward meeting SLOs. Experimental results with real-world
benchmarks validate the effectiveness of PERCs in ensuring
robust microservice performance.

1 Introduction
Modern microservice-based applications decompose function-
ality into tens to hundreds of independently managed services
that collectively process diverse request types [1, 19, 21, 27].
While this modularization improves scalability and devel-
oper productivity, it also exposes applications to severe per-
formance variability. Tail latencies, which dominate user-
perceived performance, are highly sensitive to subtle envi-
ronmental perturbations such as workload burstiness, back-
ground contention, and shifts in request composition. Our
measurements on open-source benchmarks reveal that even
modest changes in these latent conditions can induce sharp
latency spikes: for example, a 20% increase in arrival rate for
a SocialNetwork request type causes a 1.7× increase in its
99th-percentile (99p) latency despite adequate provisioning.

To mitigate such dynamics, microservice deployments typ-

ically rely on controllers, e.g., autoscalers [28, 32, 41, 43] and
admission controllers [30, 45], that adjust CPU allocations or
throttle requests to maintain service-level objectives (SLOs).
However, as our study shows (Section 2), even state-of-the-art
learning-based controllers lack robustness in dynamic envi-
ronments. By relying solely on recent latency and utilization
signals, they remain oblivious to latent environment shifts and
react only after SLOs have already been violated, resulting in
delayed and often suboptimal corrective actions.

We argue that robust microservice management requires
controllers to proactively reason about performance under
environmental perturbations. To this end, we introduce PERCs,
or Performance Robustness Certificates, a new abstraction that
provides certified upper bounds on end-to-end tail latencies
across a bounded neighborhood of perturbations. A PERC,
denoted (ε,θ), guarantees that, under all perturbations in a
parameterized set ∆E around the current environment E, the
ε-th percentile latency does not exceed θ. For instance, a
PERC (99p,120ms) certifies that the 99p latency remains
below 120ms despite plausible changes in arrival rates, service
speeds, or background interference. If this bound satisfies the
SLO, the deployment is certified robust; otherwise, controllers
can preemptively trigger corrective actions.

Designing PERCs that are both accurate and practi-
cal requires addressing three challenges: (1) the high-
dimensionality of latent perturbations, (2) the analytical in-
tractability of analyzing tail latency distributions across dis-
tributed microservices, and (3) the need for efficient runtime
computation of PERCs. To meet these challenges, we develop
a Performance Reasoning Model combining classical queue-
ing theory, formal semantics for propagating perturbations,
and data-driven estimation of model parameters. Our model
captures each service as an M/M/1-PS queue and uses results
from classical queueing theory to derive closed-form approx-
imations for end-to-end latency distributions. We formalize
the perturbations to the model, allowing a precise definition
for PERCs. Finally, we analytically compute PERCs using
only live end-to-end latency measurements within gradient
approximation methods, allowing PERCs to be updated online
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Figure 1: Performance variability for the compose request type of
SocialNetwork benchmark application. Curves represent workloads
comprising various request types, as indicated in the legend.

with negligible overhead.
While PERCs provide the basis for reasoning, their effec-

tiveness hinges on integration with controllers. We there-
fore design Galileo, a framework that unifies PERCs with
reinforcement-learning-based autoscalers and admission con-
trollers. Galileo employs shields [5,9] that evaluate controller
actions against PERCs: unsafe actions that risk violating SLOs
are replaced with provably safe alternatives. During training,
shields supply both penalties for unsafe actions and robust-
ness rewards that guide the agent toward policies resilient
to environment shifts. At inference, the same shields act as
model-predictive safeguards, ensuring that deployed actions
maintain robustness at runtime.

In summary, this paper makes the following contributions:
• We empirically demonstrate the sensitivity of microser-

vice tail latencies to environmental perturbations and the
fragility of current controllers (Section 2).

• We introduce PERCs, a new abstraction that provides certi-
fied worst-case tail latency bounds under bounded pertur-
bations (Section 3).

• We develop a Performance Reasoning Model that enables
efficient runtime computation of PERCs using queueing
analysis, formal semantics, and gradient estimation tech-
niques (Section 4).

• We design and implement Galileo, which integrates PERCs
with learned autoscalers and admission controllers through
shielding, reducing SLO violations by up to 99.4% with
only up to 22% more average CPUs (Section 5–Section 7).

2 Background and Motivation
A microservice application comprises multiple long-running
services, each executing in its own container and interacting
with others. A user request triggers one service, which may
in turn call other services to complete processing. These calls
form a directed graph representing the sequence of microser-
vices invoked for that request. Applications typically support
multiple request types, where all requests of a given type
consistently traverse the same subset of services.

2.1 Performance Variations in Microservices
Modern microservice deployments host critical business
logic [1, 21, 27], requiring requests to meet strict latency con-
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Figure 2: Execution of Autothrottle [41] over a 1-hour trace from
Alibaba traces [27] on the Hotel Reservation benchmark (with four
request types). Horizontal dashed line shows the SLO (100ms).

straints. Yet application latencies are highly sensitive to la-
tent factors such as workload patterns and composition and
resource contention from co-running jobs. Even small pertur-
bations in these factors can lead to large performance shifts.

To illustrate, we deploy benchmarks from DeathStar-
Bench [19] on a Kubernetes [2] cluster with fixed resources.
Using wrk2 [3], we generate workloads and measure end-to-
end latencies for a specific request type at fixed rates over
2-minute intervals, repeating the experiment under varying
request rates, concurrent workloads, and background job inten-
sities (details in Section 7). Figure 1 summarizes the results.

We observe two distinct regimes: (i) Stable regime: when
processing capacity exceeds arrival rate, latencies remain pre-
dictable. (ii) Overloaded regime: when arrivals outpace ca-
pacity, queues grow rapidly, causing severe latency inflation.
Even within the stable regime, small perturbations cause sharp
latency increases; e.g., raising the compose request rate from
500 to 600 req/s (20% increase) in the Social Network bench-
mark increases 99p latency by 1.68× (77ms to 130ms).

Past an inflection point, latency growth accelerates. In the
overloaded regime, increasing the compose request rate by
14% (700 to 800 req/s) drives a 10× jump in 99p latency due
to queue buildup. The inflection point shifts with concurrent
workloads: for compose alone, it is ∼700 req/s, but drops to
400 req/s when home and user requests co-run.

Background jobs further exacerbate latencies by creating
contention, reducing effective processing rates. In our experi-
ments, running CPU-intensive tasks on each cluster node and
repeating measurements at 600 req/s shows that raising aver-
age background CPU utilization from 40% to 60% increases
99p latency for compose by 5.3× (62ms to 331ms). Despite
configured CPU limits, co-running jobs contend for shared re-
sources such as preemptions, cache, and memory bandwidth,
degrading processing capacity and end-to-end performance.

As shown in Appendix A, extensive experiments with other
DeathStarBench services show similar behavior.
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Figure 3: Each curve corresponds to a particular processing rate,
with small environmental differences reflected by their proximity.
Lower curves indicate higher rates. Suppose the system runs in an
environment (marked ⋆) with high latencies. An autoscaler may
allocate more CPU to move it to a lower-latency state (green dashed
curve). Yet perturbations, e.g., a background job, can reduce the ef-
fective rate, pushing the system to the red curve with worse latencies.

2.2 Efficacy of Microservice Controllers

To manage performance variability, microservice controllers
such as autoscalers and admission controllers dynamically
adjust resource allocations and request rates. While platforms
like Kubernetes [2] provide simple heuristic controls, recent
work has explored learning-based techniques.

We evaluate two state-of-the-art learning-based controllers,
Autothrottle [41] (autoscaling) and TopFull [30] (admission
control), using two bursty, one-hour traces derived from the
open-source Alibaba cluster trace [27]. By examining their
behavior under workload fluctuations and resource contention,
we highlight their limitations in dynamic environments, under-
scoring the need for more robust performance management.

Figure 2 shows that Autothrottle quickly violates SLOs
once the request arrival process changes (e.g., mean rate
shifts), as at T =32 min (dashed line, top plot). Violations
persist until request rates subside. This occurs because the
controller lacks visibility into environment perturbations, only
detecting the shift at T =36 min (middle plot) once enough la-
tencies exceed the SLO. By the time corrective action is taken
at T =38 min (bottom plot), queued requests already inflate
latencies. Heuristic controllers suffer similarly [20, 34].

Further experiments, e.g., with the TopFull [30] admission
controller and under co-running background jobs, reveal the
same inefficacies (See full results in Appendix B).

2.3 Environment Impacts on Performance

Microservice controllers operate under the implicit assump-
tion that the true environment remains close to measured con-
ditions. In practice, small latent perturbations, e.g., changes in
background load or request composition, can shift the environ-
ment significantly. Actions that would reduce latency under
nominal conditions may fail or appear to worsen tail latency
when the environment changes; e.g., an autoscaler may add
CPUs to reduce latency, but background jobs or unanticipated
contention may lower the microservices’ effective processing
rate, pushing the system to even higher latencies (Figure 3).

This is a fundamental limitation of reactive controllers:
without explicit reasoning about potential perturbations, de-
cisions are made based on short-term signals and may not
maintain SLOs under varying conditions.
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Figure 4: Overview of our approach: shaded boxes and dashed arrows
represent new constructs introduced in our approach.

3 PERCs
For robust performance, controllers must anticipate how end-
to-end latencies change under environmental perturbations. To
this end, we introduce Performance Robustness Certificates
(PERCs), an abstraction that provides provable bounds on end-
to-end latencies across a set of perturbation scenarios. Below,
we formally define PERCs and outline how our framework
derives and applies them to robustify controllers.

3.1 PERC Definition
Microservice application performance can vary widely across
environments, as shown earlier. Here, environment encom-
passes both observable and latent factors. A PERC captures
how the performance of a certain type of requests changes
under perturbations to these factors by upper-bounding the
latency within a neighborhood of the current environment:

Definition 1 (PERCs) The PERC, Pε,E,T for a given environ-
ment E, target percentile ε and request type T is defined as
the maximum possible εp latency for requests of type T across
a range of perturbed environments, denoted by ∆E , i.e.,

Pε,E,T = max{lε,T (E ′) | E ′ ∈ ∆E} (1)

where lε,T (E) denotes the ε %-ile (or εp) of the end-to-end
latency of a specific request type T under an environment E.

3.2 Overview of Our Framework
We now describe how our framework computes PERCs and
uses them in microservice control loops (see Figure 7).
Capturing environment perturbations. A key challenge in
computing PERCs, as defined in Equation (1), lies in the under-
specification of the perturbation set ∆E . The environment
involves numerous uncontrollable factors like background
interference, making it difficult to precisely define the magni-
tude of variation that constitutes E’s local neighborhood.

To address this challenge, we design a Performance Reason-
ing Model (PRM), rooted in classical queueing theory (see Fig-
ure 4). Each service is represented as an M/M/1-PS queue,
characterized by its arrival and processing rates (Section 4.1).
The key benefit of this model is that any environmental pertur-
bation is captured as changes in these rates (arrow 1A). Then,
instead of quantifying shifts across numerous environmental
factors to capture ∆E , operators only need to specify worst
case perturbations in arrival and processing rates across all
queues (termed as "parameters" of our PRM).
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Mapping perturbations to end-to-end performance impact.
Computing PERCs requires reasoning about how perturba-
tions induce tail-latency changes, which is challenging.

To this end, building on the above, we define a formal
semantics for our PRM, mapping changes in arrival and pro-
cessing rates to end-to-end latency distributions (Figure 4;
2 ). The semantics enable us to precisely characterize the

environment perturbation set (Section 4.2) and derive expres-
sions linking environment perturbations to the parameters of
our PRM. These expressions are then used to compute PERCs.
Fitting the model to live applications. To compute accurate
PERCs, we ideally require high-fidelity real measurements of
the processing and arrival rates for all services, which we can
then fit into our model. However, obtaining these from live
applications has high overhead and is impractical.

We address this via a data-driven approach that fits pa-
rameters of our PRM to live end-to-end measurements from
the running application (see 3 in Figure 4) and allows the
model to closely resemble actual performance. We use effi-
cient gradient-estimation techniques to compute these param-
eters quickly (Section 4.3). Thus, PERCs can be recomputed
periodically at low overhead keeping them up-to-date under
environment changes.
Integration with controllers. To leverage performance rea-
soning and PERCs systematically, learned microservice con-
trollers need key design changes (arrow 4 in Figure 4).

To this end, we use our PRM to estimate the impact of a
controller action before applying it (arrow 1B in Figure 4); this
enables model-predictive shielding [8,9], a safe reinforcement
learning technique (Section 5). During training, shielding and
PERCs help craft reward signals that nudge controllers away
from unsafe actions and towards robust decisions – i.e., the
learned controller is incentivized to maintain PERCs within
desired SLOs alongside primary objectives. During inference,
shielding proactively checks whether a control action may
cause SLO violations under environment perturbations, and
if so, take a safe action identified using our PRM.

4 Performance Reasoning Model (PRM)
Rigorous performance bounds are hard to obtain in distributed
systems due to dynamic, variable environments [22, 42]. In
particular, predicting how perturbations affect SLO satisfac-
tion remains a critical challenge central to PERCs, especially
because tail latencies are hard to analyze.

We address this issue with a novel approach that combines
queueing theory, formal methods, and gradient estimation for
scalable yet precise tail performance reasoning. Our approach
models per-service and end-to-end processing in microservice
applications, then deriving closed-form approximations for
the end-to-end latency distributions; formalizes the impact
of perturbations by defining a perturbation semantics for the
model; and, armed with the model and semantics, applies
lightweight data-driven fitting to compute PERCs efficiently.
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(a) A single microservice modeled as an M/M/1-PS queue.
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(b) Services invoked by a user request modeled as a network of
M/M/1-PS queues, where requests may re-enter other queues. Here,
geo and rate are invoked sequentially.

Figure 5: Modeling the latency of a user request in a microservice
applications using a network of M/M/1-PS queues.

4.1 Request Processing Model for Microservices

Our request-processing model captures the core execution
behavior of microservices. Incoming requests enter a service
queue (Figure 5a) and are executed by worker threads. Each
service may use a fixed-size thread pool or spawn a new thread
per request. Threads share the resources allocated to a mi-
croservice (e.g., CPU, memory), and upon request completion,
the thread becomes available for the next queued request.

Modeling individual services. This execution pattern is well
captured by the M/M/1-PS queueing abstraction, where re-
quests arrive as a Poisson process with rate λ, share the pro-
cessing capacity of the server, are served at a rate µ (deter-
mined by the resources allocated to the service), and depart
upon completion. This model is exact for thread-per-request
service implementations. For fixed thread pools, it provides a
close approximation when the pool size is sufficiently large,
a common configuration used to reduce queuing delays.

Extending to microservice chains. Requests in a microser-
vice application traverse a network of services, where one
service may invoke another during processing (Figure 5b).
While waiting for a downstream response, the thread is idle
and does not consume resources, effectively causing the re-
quest to exit the queue. Once the response arrives, the thread
resumes execution, which can be viewed as the request re-
entering the queue. This behavior can be modeled by as-
signing a distinct M/M/1-PS queue to each hop along the
request’s path. This network of M/M/1-PS queues not only
closely matches microservice processing but also allows the
derivation of approximate closed-form expressions for end-
to-end latencies as shown below, unlike other generic models,
e.g., G/G/1 where such analysis is mathematically hard.

Expressions for end-to-end latency distributions and the
latency function lε,T (E). We build on a classical result from
queueing theory on the sojourn times (time between a job’s
arrival and its departure after processing) of a network of
M/M/1-PS queues. We summarize the result below; please
refer to Theorem 4.5.3 in [40] for details. The theorem implies
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that under the assumptions of overtake-free paths1, for an
ergodic2 network of M/M/1-PS queues, the sojourn times at
each queue are independent and exponentially distributed.

Mapping this to microservice applications, if a request
traverses queues (1,2, . . . ,K), the sojourn time at queue i is
θi ∼ Exp(γi)), where γi = (µi−λi) is the parameter for the
exponential distribution for the sojourn time, and µi and λi are
the processing and arrival rates at the i-th queue, respectively.
The corresponding end-to-end sojourn time for a request is
given as θ = ∑i θi (summation over the queues along the re-
quest path). We can then approximate the sum of exponential
variables, θ, using the Welch–Satterthwaite equation 3:

θ∼ Γ(α,β); α =
(Σγi)

2

Σγ2
i

, β =
Σγ2

i
Σγi

(2)

where Γ(α,β) is the Gamma distribution with parameters α

and β. For simplicity, we will use the term service parameters
to denote the processing and arrival rates (µi, λi) of individual
queues, and the term distribution parameters to denote the
end-to-end latency distribution (α, β).

Now the εp tail latency function lε,T (E), used in the PERC
Definition 1, can be expressed as:

lε,T (E) = pp f (Γ(α,β),ε) (3)

where pp f (D,ε), the probability point function for D, returns
the ε percentile value for the distribution D. If we can estimate
α and β under worst-case perturbations, we can compute the
PERC using Equation (3).
Overall model definition. Note that different request types
may invoke a different network of services. Therefore, they
must be captured under different models. Formally, the model
Mr for request type r, is given by Sr×Dr, where Sr denotes
the service parameters of all queues invoked by request type
r, and Dr denotes the distribution parameters.
Dealing with complex communication patterns. Microser-
vices may exhibit asynchronous requests with parallel service
invocations that do not perfectly conform to our model de-
scribed above. For instance, in Figure 5b, the services geo

and rate may be invoked in parallel by search. In such cases,
the end-to-end latency for a request is determined by the path
(of queues) with the longer sojourn time. In contrast, our
model assumes that all requests of a particular type follow the
same path. This simplification is not problematic in practice:
asynchronously invoked services typically have asymmetric
processing rates, meaning one service dominates as the bot-
tleneck. Consequently, even when services are invoked in

1Overtake-free paths roughly imply that jobs from within a class are
processed in the order they arrived; see [39] for the precise definition

2Ergodicity of a queueing system implies that every job completes in
finite time (or the queue does not grow indefinitely over long period of time).

3Using the Welch-Sattherthwaite approximation, one can show that if
X1,X2, . . . ,Xn are independent Gamma random variables such that X j ∼
Γ(a j,b j), then Y = ∑Xi is distributed as the Gamma distribution, Γ(p,q)

where p =
(∑a jb j)

2

∑a jb2
j

and q =
∑a jb2

j
∑a jb j

. Further, an exponential distribution is a

special case of a Gamma distribution with rate parameter, a j = 1.
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Figure 6: Wasserstein distances of proposed Gamma model vs. base-
lines. Y-axis is in log scale; markers show means.

parallel, the end-to-end latency is well-approximated by the
sequence of queues containing the slower branch.
Empirical validation. We thoroughly validate this model em-
pirically. We run the Hotel Reservation (HR) and Social Net-
work (SN) benchmarks [19] (detailed setup in Section 7) over
150 different, but controlled environments using varying re-
quest rates (200-1000 reqs/sec), arrival processes (exponential
and zipfian), and various request type mixes. For each environ-
ment, we collect end-to-end latencies for each request type,
fit a Gamma distribution to 10% of the collected samples
using Method of moments, and measure the Wasserstein dis-
tance [14] between the fitted distribution and 100% of the
collected samples for that environment.

We compare this model against Gaussians (used in [42])
and Weibull distributions (as a representative heavy-tailed
distribution). Figure 6 shows that the average Wasserstein dis-
tances over all environments are 5-44% better than Gaussian
and 73-95% better than Weibull for either applications – thus,
validating our model.

We also evaluate the Tail latency ratio between the fitted
distribution and the full set of collected samples. Across the
different request types of the HR application, the tail latency
ratios in the Gamma modeling are 6-49% better than the base-
lines, while being 0.83-0.89× the ground truth 99p latencies
on average. Similarly, for the SN application, the ratios in
the Gamma modeling are 6-33% better than the baselines,
while being 0.93-1.01× of the ground truth 99p latencies, on
average. Detailed explanations are provided in Appendix D.1.

This study shows that the Gamma distribution is indeed
a good fit for modeling end-to-end latencies. Moreover, this
model closely approximates the latency distributions for re-
quest types that do not perfectly align with our model assump-
tions. For instance, the search request type in HR and compose

request type of SN includes artifacts such as asynchronous
requests, but still our Gamma-distribution-based estimates
only incur 8% and 20% error on average.

4.2 Semantics for Reasoning about Perturbations
The model, Mr, described above only characterizes the current
state of the microservice application. Computing PERCs, how-
ever, requires understanding how this model evolves under
environmental perturbations. Here, we note a salient feature
of using the queue-based abstraction: any change in the envi-
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ronment will manifest as a change to the processing and/or
arrival rates across services. Thus, we can formalize these
perturbations into actions over the model as follows:

P ::= perturbµ i η | perturbλ i η

actions ::= P | P◦P
(4)

where perturbµ (perturbλ) is an action over our model that
applies a perturbation factor η to the processing (arrival) rate
µi (λi) of queue i. Note that the definition above allows com-
position of multiple co-occurring perturbations, captured via
the composition operator ◦. Thus, any environmental change
can be represented as one or more such perturbation actions
applied across services.

We now define the semantics of these actions, that is, how
these actions impact the model parameters. For a single action,
we define the semantics as:
∀i,η.Jperturbµ i ηK(Mr) = Mr[µi 7→ µi +ηµi,

α 7→ α+Pα(µi,η),

β 7→ β+Pβ(µi,η)]

(5)

where Jperturbµ i ηK(Mr) denotes the application of the ac-
tion perturbµ on the current model, Mr, and 7→ denotes the
update of a model parameter. The functions Pα(µi,η) and
Pβ(µi,η) are perturbation functions that denote how much
the distribution parameters α,β change when the processing
rate µi of the queue i changes by a factor η. Similar semantics
can be written for perturbλ. These semantics extend naturally
to compositions: Ja◦bK(Mr) = JaK(JbK(Mr)). For example,
for the composition of two actions, we have:

∀i, j,ηX ,ηY .J(perturbX i ηX )◦ (perturbY j ηY )K(Mr)

= Mr[Xi 7→ Xi +ηX Xi,Yj 7→ Yj +ηYYj,

α 7→ α+Pα(Xi,ηX )+Pα(Yj,ηY ),

β 7→ β+Pβ(Xi,ηX )+Pβ(Yj,ηY )]

(6)

where X ,Y can be either of µ or λ and a,b are perturbations
to different service parameters. Note that the effect of the
two perturbations can be simply added because, under our
modeling assumption, the sojourn times at each queue are
independent (Section 4.1).

Defining the range of perturbations ∆E . We can now define
∆E as the set of environments where the processing or arrival
rates of any service deviate up to some maximum factor δ

from their respective values in the current environment E.
Formalizing in terms of the model actions, we have:

∆E = {⃝
i
J(perturbµ i ηµi)◦ (perturbλ i ηλi)K(Mr)

∀i ∈ N(r),−δ < ηµi ,ηλi < δ}
(7)

where ⃝ai denotes the composition of actions ai for all
queues i, and N(r) denotes the set of services invoked by
a request of type r. A larger δ corresponds to a broader per-
turbation set, while smaller values yield narrower sets.

The parameter δ serves as a tunable hyper-parameter of our
framework, allowing operators to set the level of robustness
they want the PERCs to reflect.

Worst-case perturbations to compute PERCs. Note that the
worst-case scenario in ∆E occurs when the processing rates at
all queues decrease by the maximum value possible (i.e., -δ),
and arrival rates at all queues increase by the maximum value
possible (i.e., δ). This is because microservice latencies are
monotonic with arrival rates, and generally inversely propor-
tional to processing rates (proxy for allocations) [28, 32]. It
is for this perturbation that we would like to compute the tail
latency, which essentially acts as the PERC for the current en-
vironment. Thus, computing PERC boils down to applying the
actions Jperturbµ i −δK and Jperturbλ i δK for all queues i, us-
ing the semantics in Equation (6). Formally, this perturbation
can be defined as the following composition of actions:

∀i ∈ N(r),⃝
i
J(perturbµ i −δ)◦ (perturbλ i δ)K(Mr) (8)

All we now require for PERC computation is the knowledge
of the current parameters (α,β) and the perturbation functions
Pα and Pβ (to apply Equation (6)).

4.3 Computing PERCs Efficiently
In the ideal case, if we could accurately measure the service
parameters (µi, λi) at each service, the current distribution pa-
rameters and the perturbation functions can be obtained from
Equation (2). However, accurate measurements of service pa-
rameters are not feasible. First, extracting these service param-
eters requires significant instrumentation for large microser-
vice applications, for instance, adding sidecar containers to
each service pod that accurately measure how many requests
arrived/exited at each service. This can add significant over-
head, if done for all requests. Second, microservices being
dynamic, complex systems, environment changes can easily
lead to noisy µi and λi measurements; e.g., due to multiple
threads releasing several requests at once, these parameters
may see sudden spikes.
Data-driven inference of model parameters. We address the
aforementioned challenges via a data-driven mechanism that
relies on only end-to-end latency measurements used by con-
trollers today. Our mechanism proceeds in two steps: first,
we estimate the values of the distribution parameters using
observed end-to-end latency data, and then, we estimate Pα

and Pβ via gradient estimation methods.
Step 1: Fitting the model to live data. At short, fixed intervals,
we fit a Gamma distribution to recent end-to-end latencies
for each request type, updating the distribution parameters
(α,β). This assumes that the environment does not change
significantly within this interval.
Step 2: Estimating Pα and Pβ. We describe our tech-
nique for estimating Pα. Similar analysis follows for Pβ.
Consider α as a function over service parameters, α =
fα(µ1,µ2, . . . ,λ1,λ2, . . .) (as in Equation (2)). Then for small
η in Equation (5), Taylor expansion gives the following:

fα(. . . ,µi +ηµi, . . .)≈ fα(. . . ,µi, . . .)+ηµi
∂ fα

∂µi
(9)

Comparing the above against Equation (5), we can express
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Pα(µi,η) as ηµi(∂ fα/∂µi). To compute this, we would like to
know the gradient of α with respect to the service parameter.
Since the gradient function is not known, we leverage gradient-
estimation techniques that allow calculation of the gradient of
a function with respect to a given parameter without knowing
the first-order function [17, 23]:

µi
∂ fα

∂µi
≈ fα(. . . ,µi +ηµi, . . .)− fα(. . . ,µi, . . .)

η
= Kα,µi

(10)
for some small η. Here, η serves only as a probe to estimate
the local gradient. Once computed, we treat Kα,µi as approx-
imately constant in the neighborhood of µi, allowing us to
evaluate Pα for arbitrary η values (as long as the perturbation
remains within the small-η regime), as follows:

Pα(µi,η) = ηKα,µi (11)

The important piece here is that the value of fα(. . . ,µi, . . .)
is already known (from step 1 above), and the value
fα(. . . ,µi + ηµi, . . .) can be obtained by fitting another
Gamma distribution over end-to-end latencies collected with
the processing rate µi tweaked by a small factor η.

In practice, we can achieve this effect by simply tweaking
the current control action - resource allocation at service i -
by a factor η since there is a monotonic relationship between
the allocated resources and processing rates. Similarly, to
tweak the arrival rate λi, we can tweak the rate limits for
various request types, effectively tweaking the arrival rates at
individual services.
Final PERC computation. With the functions Pα and Pβ

estimated, we can apply the worst-case δ-perturbation to the
semantics in Equation (6):

α
′ 7→ α+∑

i
Pα(µi,−δ)+∑

i
Pα(λi,δ) (12)

β
′ 7→ β+∑

i
Pβ(µi,−δ)+∑

i
Pβ(λi,δ) (13)

The resulting PERC can now be computed using Equation (3):

Pε,E,T = pp f (Γ(α′,β′),ε) (14)

Simultaneous perturbations for quick estimates. Computing
the value of constants K in the above procedure relies on
tweaking the control action and collecting updated latencies.
A naïve implementation may perturb each service parame-
ter one-by-one, making the overall process of estimating the
perturbation functions (and hence, computation of PERCs)
time-consuming. Instead, we take inspiration from a recent
technique in gradient estimation [10] that allows simultaneous
perturbation of multiple variables. The method takes a num-
ber of samples, each time perturbing a subset of the variables
of interest at once, and then uses the resulting value of the
function in all these samples to recover the partial gradients
for each variable. This allows the computation of the quan-
tity K for several service parameters using a small number
of perturbations. We present the pseudocode in the function
COMPUTEGRADIENTS in Algorithm 1.

Algorithm 1 PERC Computation
Input: Request type r; tail percentile ε; number of perturbation samples
N; current control (allocation/rate limits) c; operator-specified perturba-
tion budget δ.
Output: Worst-case tail latency estimate Pε,E,T (the PERC).

1: procedure COMPUTECERTIFICATE(ε,c,r,δ,N)
2: D← COLLECTLATENCIES(r) ▷ Gather latencies for type r
3: (α,β)← GAMMAFIT(D) ▷ Fit Gamma distribution
4: Pα,Pβ← COMPUTEGRADIENTS(r,c,N)

▷ Use gradient estimation to compute perturbation functions.
5: α⋆← α+∑i Pα(µi,−δ)+∑i Pα(λi,δ)
6: β⋆← β+∑i Pβ(µi,−δ)+∑i Pβ(λi,δ)

▷ Worst-case distribution parameters using Equations (12) and (13)
7: Pε,E,T ← pp f (Γ(α⋆,β⋆),ε) ▷ Using Equation (3)
8: return Pε,E,T

9: procedure COMPUTEGRADIENTS(c,r,N)
10: A← PERTURBATIONMATRIX(N) ▷ See Algorithm 1 in [10]
11: for j = 1→ N do ▷ Make N perturbations
12: c( j)← UPDATECONTROL(c,a j) ▷ Perturb control.
13: D( j)← COLLECTLATENCIES(r)
14: (α( j),β( j))← GAMMAFIT(D( j)) ▷ Fit to updated latencies
15: (∇̂α, ∇̂β)← RECOVERGRADIENTS

(
{α,β,(α( j),β( j))}N

j=1

)
▷ Estimate gradients via Algorithm 1 in [10]

16: return (∇̂α, ∇̂β)

4.4 Overall PERC Computation Algorithm
Our overall algorithm is presented in Algorithm 1. At a high
level COMPUTECERTIFICATE() has these steps: (1) Given
current environment E, we collect the end-to-end latency sam-
ples obtained by the execution of the microservice application
(line 2). (2) We then fit a Gamma distribution over the col-
lected samples to obtain distribution parameters (α,β) (line 3).
(3) We then compute the perturbation functions as described
in Equations (10) and (11) (line 4). We rely on Algorithm 1
presented in [10] to compute these using a small number of
samples (lines 9–16). (4) We compute the updated distribution
parameters using the worst-case perturbation factor δ (lines 5–
6). (5) Finally, we compute Pε,E,T as per Equation (3) (line 7).
In practice, we invoke the function COMPUTECERTIFICATE()
periodically in order to get updated estimates if the underlying
environment has changed.

5 Galileo: Robust Controllers Using PERCs
Modern microservice controllers increasingly employ rein-
forcement learning (RL) to manage performance under dy-
namic workloads. These controllers are trained either of-
fline [30] or online [41] through feedback loops with three key
stages: 1. State Monitoring: At time t, the controller observes
system metrics (e.g., latency, resource usage, workload fea-
tures) to construct the state St . 2. Decision Making: A learned
agent maps St to an action at , such as scaling resources or
adjusting rate limits. 3. Reward Evaluation: At t+1, the con-
troller derives a reward rt+1 from observed metrics, guiding
subsequent learning and adaptation.

Existing controllers are non-robust (Section 2) because
state observed at time t may omit latent factors that evolve
further by t+1 when the action is applied. We introduce
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Galileo, a framework that treats robustness to such latent
dynamics as a first-class training objective. Galileo extends
shielding [5,8,9,25], a safe RL technique that monitors agent
actions against a system model and, upon detecting violations,
substitutes safe backup actions. This ensures that outcomes
satisfy a desired property: i.e., end-to-end performance meets
SLOs despite environment perturbations.

The key construct in shielding is a shield, represented as a
tuple (M ,P ,SAFE), where M is the model of the system, P
is the property of interest and SAFE is a function that takes
a control action a and computes a provably safe action a∗ =
SAFE(a). The shield is triggered if a violates P under M , in
which case the safe action a∗ is taken. During training, if the
shield is triggered, a large negative penalty is provided to the
agent – nudging the agent towards property satisfaction. The
same shield can also be used at inference time, where unsafe
actions are replaced by their SAFE counterparts – ensuring
property satisfaction at run time.

Next, we describe how to evaluate the robustness property
over our PRM (Section 5.1), how the shield integrates with
controller training (Section 5.2), and how safe actions are
computed (Section 5.3).

5.1 Shields in Galileo
Given a new action at (Figure 7), Galileo evaluates the de-
sired P (microservice performance satisfies SLOs even under
environment perturbations) under the PRM, Mr. Evaluating
this requires us to compute the expected PERC of the system
after taking the action at , requiring semantics for executing a
control action over our model.
Semantics for control actions. We extend our PRM ( Sec-
tion 4) to simulate control actions. Just as environment
changes map to variations in queue arrival or processing rates,
controller actions (e.g., adjusting resources or rate limits)
can be expressed as service parameter updates in the model.
Specifically, increasing CPU resources for service i changes
the processing rate µi of its queue, while applying a rate limit
to request type r modifies the arrival rates λ j for all services
it invokes ( j ∈ N(r); N(r) defined in Equation (7)).

Formally, we can define two types of controller actions:

controls ::= adjustCPU i η | rateLimit r η (15)

where adjustCPU corresponds to the autoscaler action of up-
dating CPU resources for queue i by a factor η, and rateLimit
changes the rate limit for request type r by a factor η. Now,
we can define their semantics in terms of the perturbµ and
perturbλ actions from Equation (4) as follows:

JadjustCPU i ηK(Mr) = Jperturbµ i ηK(Mr)

JrateLimit r ηK(Mr) = ⃝
i∈N(r)

Jperturbλ i ηK(Mr) (16)

where JaK(Mr) and N(r) denote the usual (Equations (5)
and (7)). Intuitively, increasing the CPU allocation of ser-
vice i by η corresponds to scaling the processing rate of its
queue by η. Similarly, scaling the rate limit of a request type

Action

Observed
Metrics

Performance Reasoning Model

Will 
lead to PERCs that

violate SLO?
Compute safe

action, 

Compute PERC using 

Controller (s)

Microservice

Yes

No

Penalty, 

Robustness Reward, 

Latencies, 

Reward, 

Figure 7: Integration of PERCs and Performance Reasoning for
Galileo controllers.

by η translates to scaling the arrival rates at all services.
These semantics can then be used to compute the impact on

model parameters (α and β) using Equation (5). In practice,
this yields only an approximation of service behavior, since
the computation of perturb actions assumes a small η (see
Equation (11)); thus underestimating the true impact for large
η. However, this approximation is still reasonable in practice:
controllers typically apply potentially constraining actions
(e.g., reducing CPU or increasing rate limits) conservatively
in small steps [41], while beneficial actions (e.g., adding re-
sources or lowering rate limits) may involve a larger change.
Thus, the approximation holds where it matters most – actions
critical to performance are still reasonably captured.
Shield construction. The above semantics allow us to trans-
late a new control action at into perturbation actions for our
PRM. Further, we can also compound these actions with the
actions corresponding to the worst-case δ-perturbations to the
environment (defined in Equation (8)). Thus, we can compute
the expected PERC under environment perturbations after the
action at is taken. The shield in Galileo then checks: Is this
predicted PERC within the SLO?

Formally, the evaluation of the property P for a new action
at is done as follows: we apply at along with the worst-case
actions (from Equation (8)) to our model:(
⃝

i
J(perturbµ i −δ)◦ (perturbλ i δ)K

)
◦
(
⃝

j
Jat [ j]K

)
(Mr)

∀i ∈ N(r), j ∈ S(at), where S(at) denotes the services im-
pacted by the action, and at [ j] denotes the control action for
service j. Say, applying the above actions results in distribu-
tion parameters (α′,β′); we can now compute the predicted
εp latency as pp f (Γ(α′,β′),ε) (Equation (3)). This latency
estimate acts as the PERC for the new control action at ; if this
is higher than the SLO, the shield is triggered.

5.2 Controller Training with Shields
Consider Figure 7 where the controller takes the statistics
collected at time t to produce action at and constructs some
reward function Ro using the statistics. Given the new action,
at , we evaluate the estimated PERC under the model Mr as
described above. If this PERC is higher than the SLO, the
shield is triggered. To provide this feedback to the agent, a
large negative penalty (denoted Rp) is provided (see Figure 7).

However, the Rp reward signal is inherently sparse: the
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agent may need to encounter many diverse environments be-
fore the shield is triggered. Moreover, the shield is valid only
under the model assumptions; in environments that deviate
from these assumptions, non-robust actions may not activate
the shield. Detecting non-robustness before executing the ac-
tion is difficult in such cases. These issues slow training and
limit the agent’s ability to proactively avoid unsafe actions.

Therefore, to improve learning, Galileo also incorporates
a ‘post-facto’ reward, one computer after the action is taken.
Specifically, using the latencies collected at time t, denoted Lt ,
Galileo computes PERCs using the algorithm described in Sec-
tion 4.4. Then, Galileo incorporates these PERCs as a part of
the reward signal at each time step by computing an additional
reward function for robustness, Rr = sigmoid(PERC−SLO).

The final reward combines Ro, Rr, and Rp:

r = Ro +wRr +Rp,

where w tunes the weight of the robustness reward. Intuitively,
the Rp indicates ‘will a control action lead to weak certificates
that violate SLOs’ and Rr indicates ‘how close did the state
resulting from the control action come to an SLO violation’.

5.3 Computing Safe Actions
The shield provides not only a feedback signal to the con-
troller, but also computes a safe action SAFE(a). This is im-
portant for both training and inference. For controllers trained
online (e.g., Autothrottle [41]), this ensures that ‘exploration’
steps do not impact microservice performance. For offline-
trained controllers (e.g., TopFull [30]), this ensures that poor
control actions do not impact the rewards observed by better
actions in future time steps – leading to overall improved
learning. At inference time, this can safeguard the microser-
vice application from poor control actions resulting from in-
complete training, unseen environments, or distribution shifts.

Given a control action at that violates the shield, Galileo
computes a safe action a∗ (see Figure 7) that is taken instead
of at . In computing a∗, our insight is that end-to-end laten-
cies in our model are monotonic with respect to arrival and
processing rates of queues – higher arrival rates generally
lead to higher latencies, and higher processing rates lead to
lower latencies. Exploiting this observation, we compute a
new action a by incrementing (or decrementing) at , along the
direction of the gradients (Pα and Pβ from Section 4.2). We
repeat this process until the PERC computed using some a is
within the SLO, in which case it becomes the safe action a∗.

6 Implementation
PERC Computation: The PERC computation algorithm (Sec-
tion 4.4) perturbs the current state to observe latency changes.
In our implementation, an independent daemon process han-
dles this. It first estimates current parameters (α,β) by fitting a
Gamma distribution (Method of Moments) to latency samples
from the past 60 seconds. It then applies N = 10 perturbations
(configurable; see Algorithm 1) using small Gaussian noise,
collecting new samples for 20 seconds after each perturbation

to estimate updated parameters (α′,β′) near the prior values.
To maintain stability, (α′,β′) are constrained close to (α,β),

and noise-induced gradient outliers are clipped. A full gradi-
ent estimation cycle takes 210 seconds, during which con-
trollers continue using previously computed gradients.
Controller implementation: We implement Galileo for the
online-learned autoscaler Autothrottle [41] and the offline-
trained admission controller TopFull [30], using their orig-
inal system architectures and name them Galileo-ASc and
Galileo-ADM, respectively. Crucially, we retain all states,
training, and measurement procedures of the original con-
trollers. Key aspects of our implementation are highlighted
here, with full details on states/rewards in Appendix C.
Galileo-ASc: We use a 30-second step size for both Autothrot-
tle and Galileo-ASc, leveraging all available latency data from
the past 30 seconds to compute the PERC in Rr, with w = 16
chosen through hyperparameter tuning.
Galileo-ADM: TopFull uses two-step training: first on a Sim-
ulator with artificial DAGs, then fine-tuned on the real appli-
cation. Since live latencies are not available for the first step
(necessary for computing PERCs), we only apply the Rr re-
ward function during fine-tuning. Notably, we do not require
any additional data for training Galileo-ADM – we use the
same workloads to fine-tune both TopFull and Galileo-ADM.

7 Evaluation
We evaluate the accuracy of PERCs and their utility in devel-
oping robust controllers by asking these questions:
• Do the computed PERCs provide an upper bound for laten-

cies under environment perturbations? (Section 7.1)
• Does the integration of PERCs lead to overall improved

performance for microservice controllers? (Section 7.2)
• How do the different parameters used in Galileo impact

end-to-end performance? (Section 7.3)
• How much overhead is added due to the PERC computation

process? (Section 7.4)
Experiment Setup. We evaluate our approach on two Death-
StarBench [19] applications - Hotel Reservation (HR) and
Social Network (SN). We deploy both benchmark applications
using Kubernetes [2] on a 64-core cluster (4 × 16-core Intel
Xeon CPU@2.0GHz, each with 32GB of RAM) on Cloud-
lab [15]. We use another node on the cluster to generate load
using the wrk2 [3] and Locust [4] tools.

7.1 Coverage Provided by PERC Estimates
Methodology: To evaluate whether PERCs bound worst-case
latencies, we must capture latencies under perturbations that
scale service arrival and processing rates by a factor δ (Sec-
tion 4.2). A natural approach would be to systematically per-
turb controllable factors across services over multiple exper-
iments and exhaustively explore neighborhoods of various
environments; but, this is prohibitively data-intensive and
still may miss uncontrollable latent effects such as resource
contention or queueing delays in the communication stack. In-
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stead, we let the application run in the wild with microservice
controllers (Autothrottle or TopFull) and analyze performance
post-facto, recording how arrival and processing rates evolved
and what tail latencies were incurred, then comparing these
with the PERCs for the corresponding environment.

In particular, we run the HR and SN applications for over
250 hours under diverse workloads. These workloads span
arrival rates from 0–1500 requests/sec with bursty, noisy, peri-
odic, and stable patterns; mixed request types; and scenarios
both with and without time-varying background jobs con-
suming 40–80% of CPUs. This setup yields a wide range
of application environments: in each 30-second window, we
record end-to-end latencies, per-request-type arrival rates, and
per-service CPU usage statistics. We treat the arrival rates and
CPU usage as fingerprints of the environment. To exclude
drastic shifts that lie well outside the scope of our PERCs, we
prune any window whose arrival-rate variance across the pre-
ceding five windows exceeds 5× its mean arrival rate. After
pruning, we obtain over 12,000 data points (Test Set) across
both applications and all request types, each representing a
distinct environment.

For each E in the Test Set, we define its neighborhood via
three perturbation balls: (i) Small (δ = 0.05), (ii) Medium
(δ = 0.1), and (iii) Large (δ = 0.2). A δ ball, denoted ∆E,δ,
contains all test environments whose per-service arrival rates
and CPU usage lie within a δ factor of those in E. We then
compute the PERC using latencies from E and compare it
against the 99th-percentile latencies observed across ∆E,δ.
Tightness Metric: We define the Tightness metric to capture
how the PERC compares to the worst-case 99p latency for a
given request type:

TightnessT,δ(E) =
Pε,E,T

max{lε,T (E ′) | E ′ ∈ ∆E,δ}
An PERC would have a tightness of 1 – a tightness larger
than 1 implies that the PERC is a strict upper bound over the
worst-case latencies observed empirically (desirable), while a
tightness lower than 1 implies a weak bound.
Results: Figure 8 shows the CDF of Tightness over all envi-
ronments in the Test Set for the search and compose request
types of the HR and SN applications. We provide results
for other request types in Appendix D.2. We use PERC-d to
denote the PERC computed using δ = d.
Coverage provided by PERCs: Figure 8 illustrates that the
PERCs computed for the respective balls provide upper
bounds over the worst-case latencies for most environments
– PERC-0.05 provides an upper bound over the worst-case
99p latency in the small perturbation ball for 93-97% and 96-
97% of the evaluated environments, across different request
types in HR and SN, respectively. Similarly, PERC-0.1 and
PERC-0.2 provide an upper bound for 78-93% and 75-93%
of the tested environments in the medium and large perturba-
tion balls, across the seven request types of HR and SN. In
particular, for small perturbations (δ = 0.05), where our
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Figure 8: Tightness of PERCs: CDF of the ratio of the computed
PERC in an environment to the worst-case 99p latency under a pertur-
bation ball. Curves close to the vertical line at 1 imply tight bounds,
to the left of the vertical line imply weak bounds, and to the right of
the vertical line imply a loose upper bound.

assumptions hold true, PERCs provide near-full coverage.
While larger perturbations may magnify the impact of approx-
imations used to compute PERCs, our PERCs nevertheless
continue to provide reasonable upper bounds.
Impact of δ: As we increase the δ, the PERCs provide more
coverage. For the search request type, PERC-0.2 provides
upper bounds over 4% and 9% more environments for the
medium perturbation ball, compared to bounds provided by
PERC-0.05 and PERC-0.1. However, a higher δ may also result
in loose upper bounds: for instance, for the medium perturba-
tion ball on the compose request type (Figure 8b), PERC-0.2
covers over 90% of perturbations, but the PERC is 9.7× the
empirical worst-case latency on average. In contrast, PERC-
0.05 and PERC-0.1 cover 81% and 85% of perturbations and
are 3.2× and 5.3× higher than the worst-case empirical la-
tency, respectively. This is because higher δs imply larger
perturbations in the parameter space - some of which may
not be captured in the environments we sampled. Similar
trends are observed for the search request type for HR (see
Figure 8a) and all other request types for both HR and SN
(see Appendix D.2).
Does sampling hurt PERCs? Above, we have used all latency
data available in a window of time, which is a common prac-
tice [41]. However, in some cases, this may not be feasible
due to observability costs, necessitating sampling. We ob-
serve that reducing the number of samples does not lead to a
significant drop in the accuracy of the computed PERCs. For
the compose request type, even 10% of the samples collected
are enough to get 97%, 81%, and 73% coverage for small,
medium, and large perturbation balls, respectively, which is
only slightly smaller than the full coverage of 97%, 84%,
and 75%, obtained from PERCs computed with all samples
(additional details in Appendix D.2).
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Figure 9: Galileo-ASc vs. Autothrottle on workloads from Env-A.
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Figure 10: Galileo-ADM vs. TopFull on workloads from Env-A.

7.2 Improved Efficacy of Galileo Controllers
Methodology: We evaluate Galileo by integrating PERCs with
two microservice controllers - the Autothrottle autoscaler
(Galileo-ASc) and the TopFull admission controller (Galileo-
ADM). For each Galileo controller, we also use a variant that
does not use shielding (Section 5.1), and only relies on the
robustness reward, Rr (Section 5.2). We use a δ perturbation
of 0.2 as it provides the best coverage (as shown above).

We evaluate all Galileo controllers and their baselines, sepa-
rately, on the HR and SN applications over five 1-hour Alibaba
traces [27] and replay them using Locust [4] with 10 threads.
These traces incorporate various patterns, such as sudden
bursts, gradual changes, stable arrivals, and periodic patterns,
similar to the ones used in prior works [30, 41]. We evaluate
the performance under two classes of environments: (i) vary-
ing arrival rates with a mix of request types (Env-A); and (ii)
varying arrival rates with a mix of request types, in the pres-
ence of a CPU-stressing background job (Env-B). Together,
these scenarios capture a variety of latents and environment
perturbations affecting microservice performance.
Metrics: We use SLO violations as the primary metric for
comparing the Galileo controllers against the baselines, us-
ing the same SLO of 100ms for all request types. For the
autoscaler, we additionally report the total CPU allocations,
and for the admission controller, we also measure the overall
goodput (the request rate permitted by the controller).
7.2.1 Galileo-ASc vs. Autothrottle
Figure 9 shows that for the Env-A family of workloads, the
Galileo autoscaler is significantly better at meeting SLOs for
both applications across all request types. The average SLO
violations over all workloads incurred by Galileo-ASc in the
HR benchmark are 98.4-99.4% fewer across the four request
types than for Autothrottle (Figure 9a), achieving just 0.05%
absolute violations on average. Similarly, across the three
request types in the SN benchmark, Galileo-ASc leads to 49-
76% fewer average SLO violations over all workloads, com-
pared to Autothrottle. We observe similar 75-98% and 5-33%
improvements across request types in the two benchmarks for
the Env-B workloads as well (details in Appendix D.3).
Sources of Improvement: The main reason for this improve-
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Figure 11: Deep-dive into actions of: (a) Galileo-ASc vs. Autothrot-
tle, and (b) Galileo-ADM vs. TopFull, for one trace each - other
traces have similar observations.

ment is Galileo-ASc’s ability to quickly ramp up the core
allocation before violations occur. This is evident in the av-
erage core allocations, where Galileo-ASc allocates up to
22% and 16% more cores than Autothrottle across all Env-A
workloads, for HR and SN benchmarks, respectively. As an
example, consider the time-series snippet of Galileo-ASc and
Autothrottle in Figure 11a where Galileo-ASc allocates more
CPUs as soon as latencies start to increase (at T=3.5 min;
dashed vertical line in Figure 11a). In contrast, Autothrot-
tle incurs a high cost only after several SLO violations have
occurred (at T=10 min) before increasing its allocations.

Role of Shielding: Even without the shield applied, Galileo-
ASc (denoted ‘Galileo w/o Shield’ in Figure 9) provides 93-
99% and 28-60% fewer SLO violations, compared to Au-
tothrottle, for HR and SN, respectively. This showcases the
utility of the Rr function used in the training of Galileo-ASc
(Section 5.2). Reaping the full benefits of PERCs, however,
necessitates using shields. Consider again the example in
Figure 11a, where Galileo-ASc (w/o Shield) ramps up CPU
allocations because of the high PERCs computed at T=3.5
min (third pane in Figure 11a). However, a more aggressive
action is needed to keep the latencies in check. This is evident

11



RT1 RT2 RT30.01

0.1

1

10

SL
O 

Vi
ol

at
io

ns
 (%

)

RT1 RT2 RT30.0

0.5

1.0

SL
O 

Vi
ol

at
io

ns
 (%

)

Base N=5 N=20
Wait 40s Wait 80s

Figure 12: Sensitivity to number of perturbations and wait period.

as the shield in Galileo-ASc is triggered at T=3.5 min, which
overrides the small allocation increase with a safer, larger ac-
tion (Section 5.3), thus maintaining consistently low latencies
(lower even compared to Galileo-ASc w/o Shield).
Comparison against a naïve baseline: To further demonstrate
that these benefits are indeed because of the PERCs and dis-
ambiguate the impact of additional rewards, we also compare
a naïve ‘robust’ baseline, where the Rr reward function simply
uses the observed 99p latency instead of PERCs. We find that
this latency-based baseline still incurs nearly 5% SLO viola-
tions on average and that Galileo-ASc still provides 96-99%
fewer average SLO violations across the two benchmarks
(details in Appendix D.3.2).
7.2.2 Galileo-ADM vs. TopFull
Figure 10 shows that the Galileo-ADM generally incurs sig-
nificantly smaller SLO violations for both benchmark appli-
cations for the Env-A workloads. Across the request types for
the HR benchmark, Galileo-ADM incurs 0-6% fewer SLO
violations than TopFull, averaged over the Env-A workloads.
Overall, Galileo-ADM achieves 0.5% average SLO viola-
tions for HR. Across the three request types in the Social
Network benchmark, Galileo-ADM leads to 1-60% fewer
SLO violations averaged over the Env-A environments. We
observe 2-46% improvements in SLO violations across the
two benchmarks as well for the Env-B workloads, and provide
the detailed results in Appendix D.
Sources of Improvement: The higher SLO violations incurred
by TopFull are because it is not conservative enough in setting
the rate limit. Figures 10a and 10b show that Galileo-ADM
achieves the significant improvements in SLO violations by
(slightly) lowering the average goodput across Env-A work-
loads, by 40% and 35%, and peak goodputs by only 10% and
6%, for the HR and SN benchmarks, respectively. As an ex-
ample, Figure 11b’s cumulative violations show that while
TopFull continues to use a high rate limit despite seeing SLO
violations, the PERCs and shields used during the training of
Galileo allow it to set a more conservative rate limit.

7.3 Sensitivity Analysis
We evaluate the sensitivity of Galileo controllers to the hy-
perparameters used in PERC computation. Gradient estimates
rely on N = 10 perturbations with a wait of p = 20 seconds
after each. We tweak N and p. Figure 12 shows that a smaller
number of perturbations N = 5 reduces the accuracy of the
gradients leading to poor end-to-end performance. On the

other hand, N = 20 provides more accurate estimates but
takes too long – roughly 8 minutes for a single gradient esti-
mate, which also degrades the overall performance. Similarly,
waiting too long (p = 40s or p = 80s) leads to longer gradient
estimation process, degrading overall performance. Note that
in spite of these choices, the SLO violations continue to be
low for both of these parameters.

7.4 Overheads of Computing PERCs at Run-time
For Galileo controllers, PERCs are needed to be computed
at run-time, handled by a daemon process (Section 6). We
measure the time spent in computing gradients from the per-
turbed values across all traces from the Env-A and Env-B
workloads, and find that it is 1.3ms on average, with a maxi-
mum of up to 27ms, which is negligible compared to the total
PERC computation loop of about 210 seconds.

8 Related Work
Microservice Controllers. Prior work [28,31,32,34,41,43,44]
has explored both learned and non-learned approaches for au-
toscaling. Learned systems such as Sinan [43] and FIRM [31]
train deep neural networks using extensive instrumentation,
but their accuracy depends heavily on high-quality training
data. Analytical models [28, 34, 44] capture end-to-end la-
tency under varying resources and arrival rates, yet overlook
perturbations that alter processing rates, limiting robustness.
AutoThrottle [41], as shown in Section 2.2, similarly lacks
robustness. In general, existing autoscalers fail to model di-
verse environmental perturbations and their impact on latency.
For admission control, non-learned methods such as Dagor
and Wisp [38, 45] use priorities and thresholds but risk star-
vation [30]. TopFull [30] applies RL-based rate limiting but
remains insensitive to latency perturbations and non-robust.
Formal Analysis of Distributed Systems. Prior work on for-
mal system analysis has largely targeted worst-case proper-
ties such as correctness [18, 35], liveness [37], and reliabil-
ity [36]. While valuable for debugging and understanding
large systems, these approaches cannot guide real-time mi-
croservice controllers since they ignore performance. Recent
efforts [6, 7] analyze network performance but rely on heavy-
weight solvers and complex models, making them unsuitable
for real-time PERC computation. Other methods estimate
performance bounds via static analysis [22, 26, 29, 33] or
fine-grained code execution measurements [11]. Both require
extensive per-component instrumentation and struggle to com-
pose individual measurements into end-to-end tail guarantees
(Section 4.1). Performal [42] combines formal analysis with
real-time measurements but assumes Gaussian delay distribu-
tions along the worst-case (“longest”) path of a microservice
application, a model that is inaccurate (Section 4.1).
Bounds for Queueing Networks Traditional queueing-
theoretic bounds [12,13,16,24] fall into two categories: (i) net-
work calculus for deterministic arrivals and departures, which
can be loose; and (ii) stochastic extensions exploiting statisti-

12



cal multiplexing via Moment Generating Functions (MGFs),
accurate only under large-delay or many-flow regimes. In
contrast, our goal is to derive tail bounds that are easily pa-
rameterizable across “what-if” traffic profiles near a nominal
case, without relying on such scaling assumptions.

9 Conclusion
Ensuring robust performance in microservice applications is
critical for meeting SLOs in dynamic environments. Existing
controllers struggle with robustness due to their reliance on
instantaneous performance metrics, which fail to account for
latent environmental factors. To address this gap, we intro-
duced PERCs, which provide statistical performance bounds
under a range of perturbations. By leveraging a queueing-
theoretic model, we enable efficient PERC computation, mak-
ing PERCs suitable for real-time decision-making. Our frame-
work, Galileo, integrates PERCs with controllers, improving
their resilience. Through extensive evaluation, we demon-
strate that our queueing modeling is accurate, PERCs are tight,
and Galileo significantly reduces SLO violations.
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Figure 15: Execution of the TopFull [30] controller over a 1-hour
trace from Alibaba traces [27] on the Hotel Reservation benchmark.
Horizontal dashed line shows the SLO (100ms).
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Figure 16: Impact of running background CPU stress jobs on end-to-
end performance of microservice controllers for the Hotel Reserva-
tion benchmark.

500 1000 1500 2000 2500
Rate (req/s)

10ms

100ms

1s

10s

99
p 

la
te

nc
y 

(m
s)

search+user
all

search
search+recommend

Figure 13: Performance variability for the search request type of
HotelReservation benchmark application.
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Figure 14: Impact of background CPU stress jobs on 99p latencies of
search and compose request types for Hotel Reservation and Social
Network benchmarks, respectively.

Appendix
A Performance Variations in Microservices
We repeat the experiment as mentioned in Section 2.1 with
the Hotel Reservation benchmark. Figure 13 shows the per-
formance variations for the search request type, as the arrival
workload and the concurrent load is changed. A mere 6.6%
increase in the request rate (from 1500 to 1600 req/sec) leads
to a 1.7× increase in the latencies. As we observed with the
Social Network application in Section 2.1, the variations are
impacted by the presence of concurrent loads.

Figure 14 shows the impact of the presence of a back-
ground CPU stress job on various request types of the Hotel
Reservation and Social Network benchmarks. We generate
several workloads and measure end-to-end latencies in the
presence and absence of background jobs. Then we compute
the Stress Impact as the ratio of the 99p latencies in the pres-
ence of background jobs versus in nostress conditions. For
the Hotel Reservation application, different request types can
experience 1.09-1.55× increased 99p latencies on average,
whereas for the Social Network application, request types can
experience 2.4-4.7× higher 99p latencies on average.

B Efficacy of Microservice Controllers
B.1 Efficacy of TopFull in Adapting to Workload

Changes
Similar to the issues we observed in Autothrottle, TopFull’s
admission control mechanism reacts too late to prevent SLO
violations, leading to 99th-percentile latencies that can be
up to 20× higher than the desired SLO (see Figure 15). The
solid vertical line in Figure 15 shows that the increase in the
arrival rates starts at T=35.5 min, but the controller rate-limits
requests at T=38.5 min when SLO violations start (see the
dashed vertical line in Figure 15). Like Autothrottle, TopFull’s
reliance on just observed metrics precludes any information
about environment perturbations, causing severe SLO viola-
tions.
B.2 Performance in the Presence of Background Jobs
These issues are exacerbated when these learned controllers
are deployed in the presence of contending background jobs.
Similar to Section 2.1, we start a CPU stressor job that con-
sumes 50-80% of the CPUs in a time-varying manner and
measure the end-to-end performance of Autothrottle and Top-
Full over a bursty 1-hour trace from the Alibaba trace dataset.
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Figure 17: Ratio of the 99p data point on the fitted distribution to
the actual 99p latencies. Markers show the mean values. Closer to 1
implies higher accuracy.

Our findings are illustrated in Figure 16.
In the case of Autothrottle, SLO violations increase by

up to 3× for certain request types while for TopFull, the
same background CPU stress job can lead to up to 60% SLO
violations. Note that while both controllers do take the right
action under the presence of background jobs – Autothrottle
increases the overall CPU allocations and TopFull reduces
the effective rate limit, the high SLO violation percentage
indicate that the actions were not aggressive enough.

C Implementation Details
Table 1 shows the states and reward functions used by the
two controllers, Autothrottle and TopFull, and how Galileo
modifies them.
Galileo-ASc: We use a completely online controller for Au-
tothrottle and Galileo-ASc. For the contextual bandit con-
troller, we keep all hyperparameters same except for the ex-
ploration rate, which we set to 0.1, as reported in the original
paper [41]. We use the same architecture as the original imple-
mentation but for the communication between the controller
and the client (to obtain the latency and workload statistics) -
we use gRPC. We observed better performance with the step
size=30 seconds for Autothrottle on the bursty traces we con-
sidered (instead of the default 1 min suggested in the original
paper [41]), and hence use the step size as 30s.
Galileo-ADM: We use the same set of hyperparameters as
reported in the original paper for TopFull [30], and fine-tune
the provided base model (trained on the Simulator) for 800
episodes.

D Detailed Evaluation Results
D.1 Complete Results for Empirical Validation of Our

Request Processing Model
Methodology: We run the HR and SN applications from
DeathStarBench under 150 different, but controlled environ-
ments using the wrk2 [3] tool, with varying request rates
(200-1000 reqs/sec), arrival processes (exponential and zip-
fian), and various request type mixes. For each environment,
we collect end-to-end latencies for each request type, fit a
Gamma distribution to 10% of the collected samples using
Method of moments, and measure similarity metrics (more

below) between the fitted distribution and 100% of the col-
lected samples for that environment. Our environment set is
diverse – we observe 99p latencies ranging between 1ms to
10s across all request types.
Metrics: We use two metrics to evaluate the similarity: (i)
Wasserstein distance [14] to measure the magnitude of dif-
ference between two probability distributions; and (ii) Tail
latency ratio (ratio of the 99p data point on the fitted distribu-
tion to the ground truth 99p latency).
Baselines: An alternate method of approximating the end-to-
end latency distributions is by using a Gaussian distribution
(denoted baseline) as proposed previously in [42] for perfor-
mance analysis of distributed systems. Similarly, heavy-tailed
distributions are often thought to closely match system laten-
cies, so we choose the Weibull distribution as a representative
heavy-tailed distribution.
Results: The results for Wasserstein distances are presented in
Section 4.1. We present the results for Tail latency ratios here.
Improved modeling of end-to-end latency distributions results
in more accurate tail percentile estimates, as demonstrated
in Figure 17. Across the different request types of the HR
application, the tail latency ratios in the Gamma modeling
are 6-16% better than the baseline, and in terms of absolute
values, the 99p data points derived via the Gamma distribution
are 0.83-0.89× the ground truth 99p latencies on average.
Similarly, for the SN application, the ratios in the Gamma
modeling are 6-15% better than the baseline on average, and
the 99p data points are 0.93-1.01× of the ground truth 99p
latencies, on average.
Sources of Improvement: The underlying reason for the im-
provement over the baselines is that the Gaussian distribu-
tion is not well-suited for dynamic microservice applications
where the variances can be very high, leading to distributions
with tails heavier than Gaussian’s. Furthermore, a Gaussian
fit can also result in negative values of latencies if the mean
end-to-end latencies are small.
D.2 Complete Results for Tightness of PERCs
Figure 18 reiterates our findings from Section 7.1 that PERCs
can provide tight bounds for various perturbation balls. For
different amounts of perturbations, different δ values must be
used for computing PERCs. Overall, using PERC-0.054 can
provide 93-97% coverage over small perturbation balls, PERC-
0.1 can provide 78-93% coverage over medium perturbation
balls and PERC-0.2 can provide 75-93% coverage over large
perturbation balls across the various request types of the HR
benchmark (Figure 18).

We also provide the full details of the sampling efficiency
in Figure 19.
D.3 Galileo-ASc vs. Autothrottle Additional Results
D.3.1 Results for the Env-B workloads
Continuing our findings in Section 7.2.1, Figure 20 shows that
Galileo-ASc incurs between 62-75% fewer SLO violations

4Reusing the same notation as in Section 7.1
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Controller Agent Description Vanilla Reward Function, Ro Updated Reward Function with PERCs
Autothrottle au-
toscaler [41]

Online-learned,
contextual-bandit agent
to decide throttle ratio
targets for services,
given a particular
arrival request rate

If latencies violate the SLO, minimize latencies else
minimize the allocations. The cost function seeks to
balance minimal allocations and optimal latencies.

if latency <= SLO:
cost = allocation

else:
cost = latency + 2

Add a η*sigmoid(PeRC - SLO) term to the cost func-
tion, where η is a hyper-parameter.

if latency <= SLO:
cost = allocation

else:
cost = latency + 2

cost += η*sigmoid(PeRC - SLO)

TopFull admis-
sion controller
[30]

Offline-trained, RL
agent that uses PPO
to learn the rate limit
given the current
goodput and observed
latencies

Maximize the following reward function, where
∆Goodput corresponds to the change in the rate of
successful requests, minus a penalty for violating the
latency SLO.

reward = ∆Goodput -
ρ*max(0, latency - SLO)

Provides another penalty of the form η*sigmoid(PeRC

- SLO), where η is a hyper-parameter.

reward = ∆Goodput -
ρ*max(0, latency - SLO) -

η*sigmoid(PeRC - SLO)

Table 1: Description of controllers where we applied PERCs and the modified reward functions. Highlighted text shows the augmented Rr
reward function. PERCs are calculated for a pre-defined value of ε.
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(a) HR: recommend Request Type
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(d) SN: home Request Type
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Figure 18: Tightness of PERCs on the request types of: (a)-(c) Hotel
Reservation, and (d)-(e) Social Network benchmarks. search and
compose request types are shown in Section 7.1
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Figure 19: Impact of reducing the samples used for computing PERCs
for the compose request type. PERCs computed for δ=0.2

across the four request types of HR and between 41-65%
fewer SLO violations across the three request types of SN.
Similar to the Env-A workloads, the improvements can be
attributed to more responsive adjustments to allocations, 1-
17% higher average allocations, and up to 15% higher average
peak core allocation by Galileo-ASc.
D.3.2 Comparison against a Naïve Baseline
We construct Autothrottle++, where we keep the same re-
ward function as Galileo-ASc but replace the PERCs in the Rr
reward with the scaled 99p latencies; and evaluate Autothrot-
tle++ against Galileo-ASc for the HR benchmark. Figure 21
shows that Galileo-ASc outperforms Autothrottle++. Galileo-
ASc incurs 28% and 27% fewer average violations across all
workloads and request types for the HR Benchmark in Env-A
and Env-B respectively, with only 1.6% and 6% greater aver-
age allocations. These results show that certificates provide
additional context that enables more robust decision-making,
and that a naïve incorporation of latencies into the controller
reward function leaves performance on the table.
D.4 Galileo-ADM vs. TopFull Additional Results
Continuing our findings in Section 7.2.2, Figure 22 shows
that Galileo-ADM incurs 0-6% fewer SLO violations, on
average, across the four request types of HR and 14-42%
fewer SLO violations, on average, across the three request
types of SN. Similar to the Env-A workloads, the root cause
for this improvement is the slightly lower (1-24% on average)
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Figure 22: Galileo-ADM vs. TopFull on: (a) Hotel Reservation; and
(b) Social Network application for Env-B.
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Figure 20: Galileo-ASc vs. Autothrottle on: (a) Hotel Reservation;
and (b) Social Network for Env-B.
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Figure 21: Galileo-ASc vs. Autothrottle++ on Hotel Reservation
benchmark for (a) Env-A and (b) Env-B.

goodput allowed by Galileo-ADM.
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