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Increasing Adoption of Microservices

• More than 85% of large enterprises (5000+ employees) are already using microservice 
architecture for their applications [1].

• Software developers, on average, develop 50% of their applications using microservices [2].

2[1] Global usage of microservices in organizations 2021, by organization size. 
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/

[2] Microservices in the enterprise, 2021: Real benefits, worth the challenges. 
https://www.ibm.com/downloads/documents/us-en/10a99803ce2fdd73
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Communication in Microservice Applications

• Complex traffic patterns necessitate communication policies.
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Communication in Microservice Applications

• Complex traffic patterns necessitate communication policies.
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Implementing policies in the application code complicates 
development, deployment and configuration

Frontend Recommend Catalog MongoDB

beta-
Catalog

Distribute requests from 
Recommend to `beta’ and 

`prod’ of Catalog in 80:20 ratio

Disallow requests from 
non-premium users to 

recommend

Count number of 
requests that failed 
with error code 500



Service Meshes for Policy Enforcement

Enforce policies inside a sidecar container, running alongside app containers.

• Sidecars intercept all incoming and outgoing traffic from application containers.
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Service Meshes for Policy Enforcement

Enforce policies inside a sidecar container, running alongside app containers.

• Sidecars intercept all incoming and outgoing traffic from application containers.

• Sidecars are configured by the service mesh control plane.
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Variety of Service Mesh Offerings
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Variety of Service Mesh Offerings
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Several being used in production … … and many more being actively developed!

The wide variety of service meshes allow different trade-offs 
between performance and ease of configurations.



Service Meshes: Ideal Vision
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Service Meshes: Ideal Vision
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Catalog MongoDB

beta-
Catalog

Sidecar Sidecar

Sidecar

Sidecar

Enable rich policies over 
microservice communication.

Enforce policies at minimal 
performance overhead.

Exploit the trade-offs provided 
by diverse data planes.



Service Meshes Today: Far from Ideal!
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Our Proposal: Copper and Wire
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Our Proposal: Copper and Wire
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Frontend Recommend

Catalog.v2

Catalog.v1

Copper
Policy

High-level abstraction for 
dataplane functionality, ACTs

Specify policies over paths
using run-time contexts

Eliminate redundant sidecars 
using clever optimizations.

Policy Policy

Wire Control Plane

Use diverse dataplanes

Specify rich policies

Minimal overhead of mesh



Drawback: Dataplane Heterogeneity not Well-Supported

• To extract maximum performance, developers must use different dataplanes!

9

Part 1: Supporting Diverse Dataplanes    |    Part 2: Enabling Rich Policies    |    Part 3: Pruning Redundant Sidecars

Dataplane Features Performance

P1, P2

P1

P1: Circuit breaking policy (at most 
100 requests at a time)

P2: Drop requests with `free’ header.

Dataplane A

Dataplane B



Drawback: Dataplane Heterogeneity not Well-Supported

• To extract maximum performance, developers must use different dataplanes.

• Problem: Same policy may require intricate configurations for each dataplane!
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kind: DestinationRule

...

trafficPolicy:

 connectionPool:

  tcp:

   maxConnections: 1

  http:

   maxRequestsPerConnection: 100

kind: CiliumClusterEnvoyConfig

...

circuit_breakers:

 thresholds:

 - priority: "DEFAULT"

   max_requests: 100

   max_pending_requests: 100

Dataplane BDataplane A
P1: Circuit breaking policy (at most 

100 requests at a time)
P2: Drop requests with `free’ header.



Drawback: Dataplane Heterogeneity not Well-Supported

• To extract maximum performance, developers must use different dataplanes.

• Problem: Same policy may require intricate configurations for each dataplane!

• Problem: Developers need to manually configure separate control planes!
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P1: Circuit breaking policy (at most 
100 requests at a time)

P2: Drop requests with `free’ header.
Frontend

Catalog.v2

Catalog.v1

Control Plane A Control Plane B

P1 P2 P1

Recommend



Idea: Abstract Communication Types (        )

• Identify the common object used by all dataplanes and all policies.
• Elevate as a first-class citizen in programming (OpenFlow-inspired) 

• Use standard polymorphism and OOP to represent dataplane functionality.
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ACTs

Deny(.)
GetHeader(.)
SetHeader(.)

...

GetStatusCode(.)
GetHeader(.)
SetHeader(.)

...

SetTimeout(.)
SetMaxOpenConnections(.)

...

ACTs

Request Response Connection
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⇒ Dataplane Interfaces

• ACTs can be derived to express dataplane functionality.
• Request ⇒ HTTPRequest, gRPCRequest, etc.

• Connection ⇒ TCPConnection, HTTPConnection, etc.
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ACTs

Deny(.)
GetHeader(.)
SetHeader(.)

...

Request

Deny(.)
GetHeader(.)
SetHeader(.)
SetDeadline(.)

gRPCRequest

Deny(.)
GetHeader(.)
SetHeader(.)

RouteToVersion(.)

HTTPRequest

Dataplane A 
Interface

Dataplane B 
Interface
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Drawback: Specifying Rich Policies is Hard

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio
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Policy P1

Destination 
Service

- route:

 - destination:

   host: catalog

   subset: v2

  weight: 50

 - destination:

   host: catalog

   subset: v1

  weight: 50

hosts:

- catalog

http:

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P1

P1

But the given policy must only execute 
over requests from Frontend!
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Drawback: Specifying Rich Policies is Hard

15

Policy P2

Add fromFE header to 
only the requests to 
Recommend service.

hosts:

- recommend

http:

- headers:

  request:

   add:

    fromFE: true

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P2
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Policy P1

- route:

 - destination:

   host: catalog

   subset: v2

  weight: 50

 - destination:

   host: catalog

   subset: v1

  weight: 50

hosts:

- catalog

http:
- match:

 - headers:

   fromFE:

    exact: true

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

P1

P1
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Drawback: Specifying Rich Policies is Hard
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Policy P2

Add fromFE header to 
only the requests to 
Recommend service.

hosts:

- recommend

http:

- headers:

  request:

   add:

    fromFE: true

Complicates policy specification as developers need to manually “break-down” the policies!
Makes microservice modifications challenging as policies only work for specific application graphs!

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P2

Modify source code to 
propagate the header
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Policy P1

- route:

 - destination:

   host: catalog

   subset: v2

  weight: 50

 - destination:

   host: catalog

   subset: v1

  weight: 50

hosts:

- catalog

http:
- match:

 - headers:

   fromFE:

    exact: true

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

P1

P1



Run-time Contexts

• Copper policies are specified over concrete instantiations of ACTs, each 
associated with a run-time context.

• The run-time context carries the history of events leading to an object.
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Frontend (F) Reco. (R) Catalog (C)

Ctx: (F, r1, R) Ctx: (F, r1, R), (R, r2, C) 

r2r1
Frontend (F) Reco. (R)

Ctx: (F, c, R) 

c

Connection type objects Request/Response type objects
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Policy Expression over Context Patterns

Context patterns = regular expressions of context strings.

• Policy specification is independent of intermediate services.

• Multiple request paths can be expressed under a single policy.
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• Policy specification is independent of intermediate services.

• Multiple request paths can be expressed under a single policy.
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Frontend (F) Reco. (R) Catalog (C)

Ctx: F->R->C

r

Admin (A)

Apply policy over context pattern: “Frontend.*Catalog”

Ctx: F->A->C

r



import "interface.cui"

policy distribute (

  act (RPCRequest req)

  using (FloatState sampler)

  context ("Frontend.*Catalog")

) {

  GetRandomSample(sampler);

  if (IsLessThan(sampler, 0.5)) {

    RouteToVersion(req, 'Catalog', 'v1');

  } else {

    RouteToVersion(req, 'Catalog', 'v2');

 }

}

Copper Policy Programs
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import "interface.cui"

policy distribute (

  act (RPCRequest req)

  using (FloatState sampler)

  context ("Frontend.*Catalog")

) {

  GetRandomSample(sampler);

  if (IsLessThan(sampler, 0.5)) {

    RouteToVersion(req, 'Catalog', 'v1');

  } else {

    RouteToVersion(req, 'Catalog', 'v2');

 }

}

Copper Policy Programs
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import common.cui;

state FloatState{

  action GetRandomSample(self),

  action IsLessThan(self, float value),

}

act RPCRequest: Request{

  action Deny(self),

  action GetHeader(self, string header),

  action SetHeader(self, string header,

   string value),

  action RouteToVersion(self, string service,

   string label),

}
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Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

Copper Policy Program Dataplane Interface



import "interface.cui"

policy distribute (

  act (RPCRequest req)

  using (FloatState sampler)

  context ("Frontend.*Catalog")

) {

  GetRandomSample(sampler);

  if (IsLessThan(sampler, 0.5)) {

    RouteToVersion(req, 'Catalog', 'v1');

  } else {

    RouteToVersion(req, 'Catalog', 'v2');

 }

}

Copper Policy Programs
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import common.cui;

state FloatState{

  action GetRandomSample(self),

  action IsLessThan(self, float value),

}

act RPCRequest: Request{

  action Deny(self),

  action GetHeader(self, string header),

  action SetHeader(self, string header,

   string value),

  action RouteToVersion(self, string service,

   string label),

}

Part 1: Supporting Diverse Dataplanes |    Part 2: Enabling Rich Policies |    Part 3: Pruning Redundant Sidecars

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

Specify context 
pattern

Specify policy logic, using conditionals and 
supported states.

Copper Policy Program Dataplane Interface



Drawback: Sidecars Impose Overheads

• L7 processing imposes latency overheads

19

Frontend Search Geo Mongo

(Microservice chain from HotelReservation1 benchmark)

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, et. al. 2019. An Open-Source 
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.
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Pruning Redundant Sidecars

Prune redundant sidecars using:
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Frontend

Admin

Recommend Catalog

P2
P1

P2
P1

P2
P1

P2
P1

P1: Set a deadline for requests to Catalog
P2: Attach a `region’ header to requests 

from Frontend to Recommend

Example policies shown above
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• Application graphs: service communication 
graph
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Pruning Redundant Sidecars

Prune redundant sidecars using:

• Application graphs: service communication 
graph

• Policy semantics: where a policy can be 
correctly executed

• For example, P2 can be enforced at the sidecar of 
either Frontend or Recommend
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[Egress]

action RouteToVersion(self, string service, string label)

Use Action Annotations in dataplane interfaces 
to extract policy execution semantics.



Dataplane Optimization by Wire: Overview
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A
B

C
D E

Context patterns from user policies

• A policy can correctly execute at the 
terminal pair of the context pattern.

“A.*DE” can only be checked at D or E!

ACTs and Action Annotations from Interfaces

// Dataplane A interface

action GetHeader(self, string header)

// Dataplane B interface

action GetHeader(self, string header)

action SetDeadline(self, float deadline)

• A dataplane can only support the 
functions listed in its interface.



Dataplane Optimization by Wire: Overview
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A
B

C
D E

Context patterns from user policies

• A policy can correctly execute at the 
terminal pair of the context pattern.

“A.*DE” can only be checked at D or E!

ACTs and Action Annotations from Interfaces

// Dataplane A interface

action GetHeader(self, string header)

// Dataplane B interface

action GetHeader(self, string header)

action SetDeadline(self, float deadline)

• A dataplane can only support the 
functions listed in its interface.

Model these as constraints to an SMT solver!



Evaluation Questions

• Does Copper help enable simple and expressive mesh policies relative to today’s 
approaches?

• How beneficial is Wire for real-world applications in lowering dataplane overhead?

• Does Wire help in enabling the effective use of multiple dataplanes compared to today’s 
best approaches?

• What is the scalability of the Wire control plane?

• What are the overheads of using the eBPF add-on?

22
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Does Copper Simplify Policy Expression?

Against Istio, Copper policies are significantly smaller and easier to write.
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Header 
Manipulation

Traffic 
Management

Access 
Control

Rate Limiting



Can Wire Lower Dataplane Overheads?

• Comparison controllers:
• Istio: Default control plane

• Istio++: Default control plane + knowledge of application graph to prune sidecars.

    [The best developers can get today via significant manual effort.]

• Wire: Uses application graph + policy semantics to optimize the data plane.

• Testbed: 80-core Cloudlab cluster, consisting of 4 nodes each with 20-core 
Xeon CPU@2.40GHz and 64GB RAM

24



Can Wire Lower Dataplane Overheads?

Enforced policy: Header manipulation rules for a set of contexts

By systematically reducing sidecars, Wire’s configured dataplane can sustain 
higher throughput.
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higher throughput.
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Istio sidecar Istio++ sidecar Wire sidecar



Copper Wire: Summary

26

act RPCRequest: Request{

  ....

}

import "interface.cui"

policy distribute (

  act (RPCRequest req)

  context (“A.*D")

) {

  ....

}

policy.cupinterface.cui

act HTTPRequest: Request{

  ....

}

A new abstraction for 
dataplanes to express 
their functionalities.

Policy specification 
over contexts is easy 

and intuitive.
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Using application graph, 
policy contexts, and policy 
semantics, Wire minimizes 

dataplane overheads.

act RPCRequest: Request{

  ....

}

import "interface.cui"

policy distribute (

  act (RPCRequest req)

  context (“A.*D")

) {

  ....

}

policy.cup
A

B

C
D

interface.cui

act HTTPRequest: Request{

  ....

}

Wire Control Plane

Optimal Dataplane Sidecars

A new abstraction for 
dataplanes to express 
their functionalities.

Policy specification 
over contexts is easy 

and intuitive.



Copper Wire: Summary

26

Using application graph, 
policy contexts, and policy 
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eBPF add-ons perform 
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avoiding heavy sidecars.
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}

import "interface.cui"

policy distribute (
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) {
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}

policy.cup

eBPF

eBPF

eBPF

eBPF

A
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C
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act HTTPRequest: Request{
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Using application graph, 
policy contexts, and policy 
semantics, Wire minimizes 

dataplane overheads.

eBPF add-ons perform 
context propagation, 

avoiding heavy sidecars.

act RPCRequest: Request{

  ....

}

import "interface.cui"

policy distribute (

  act (RPCRequest req)

  context (“A.*D")

) {

  ....

}

policy.cup

eBPF

eBPF

eBPF

eBPF

A
B

C
D

interface.cui

act HTTPRequest: Request{

  ....

}

Wire Control Plane

Optimal Dataplane Sidecars

A new abstraction for 
dataplanes to express 
their functionalities.

Policy specification 
over contexts is easy 

and intuitive.

With Copper Wire, we redesign the entire service mesh stack leading to 
simpler policy specification and better performance



Thank You!
Questions?

         Divyanshu Saxena (dsaxena@cs.utexas.edu)

         https://divyanshusaxena.github.io/
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