
Bridging Expressiveness and
Performance for Service Mesh Policies

1

Divyanshu Saxena, William Zhang, Shankara Pailoor,
Işıl Dillig, Aditya Akella

Increasing Adoption of Microservices

• More than 85% of large enterprises (5000+ employees) are already using microservice
architecture for their applications [1].

• Software developers, on average, develop 50% of their applications using microservices [2].

2[1] Global usage of microservices in organizations 2021, by organization size.
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/

[2] Microservices in the enterprise, 2021: Real benefits, worth the challenges.
https://www.ibm.com/downloads/documents/us-en/10a99803ce2fdd73

Frontend Recommend Catalog MongoDB

Communication in Microservice Applications

• Complex traffic patterns necessitate communication policies.

3

Frontend Recommend Catalog MongoDB

beta-
Catalog

Communication in Microservice Applications

• Complex traffic patterns necessitate communication policies.

3

Implementing policies in the application code complicates
development, deployment and configuration

Frontend Recommend Catalog MongoDB

beta-
Catalog

Distribute requests from
Recommend to `beta’ and

`prod’ of Catalog in 80:20 ratio

Disallow requests from
non-premium users to

recommend

Count number of
requests that failed
with error code 500

Service Meshes for Policy Enforcement

Enforce policies inside a sidecar container, running alongside app containers.

• Sidecars intercept all incoming and outgoing traffic from application containers.

4

Frontend Recommend Catalog MongoDB

beta-
Catalog

Service Meshes for Policy Enforcement

Enforce policies inside a sidecar container, running alongside app containers.

• Sidecars intercept all incoming and outgoing traffic from application containers.

4

Frontend Recommend Catalog MongoDB

beta-
Catalog

Sidecar Sidecar Sidecar

Sidecar

Sidecar

Service Meshes for Policy Enforcement

Enforce policies inside a sidecar container, running alongside app containers.

• Sidecars intercept all incoming and outgoing traffic from application containers.

• Sidecars are configured by the service mesh control plane.

4

Frontend Recommend Catalog MongoDB

beta-
Catalog

Sidecar Sidecar Sidecar

Sidecar

Sidecar

Control Plane

Variety of Service Mesh Offerings

5

Several being used in production …

Variety of Service Mesh Offerings

5

Several being used in production … … and many more being actively developed!

The wide variety of service meshes allow different trade-offs
between performance and ease of configurations.

Service Meshes: Ideal Vision

6

Frontend Recommend Catalog MongoDB

beta-
Catalog

Sidecar Sidecar Sidecar

Sidecar

Sidecar

Service Meshes: Ideal Vision

6

Frontend Recommend Catalog MongoDB

beta-
Catalog

Sidecar Sidecar Sidecar

Sidecar

Sidecar

Exploit the trade-offs provided
by diverse data planes.

Service Meshes: Ideal Vision

6

Frontend Recommend Catalog MongoDB

beta-
Catalog

Sidecar Sidecar Sidecar

Sidecar

Sidecar

Enable rich policies over
microservice communication.

Exploit the trade-offs provided
by diverse data planes.

Service Meshes: Ideal Vision

6

Frontend

Recommend

Catalog MongoDB

beta-
Catalog

Sidecar Sidecar

Sidecar

Sidecar

Enable rich policies over
microservice communication.

Enforce policies at minimal
performance overhead.

Exploit the trade-offs provided
by diverse data planes.

Service Meshes Today: Far from Ideal!

7

Frontend Recommend

Catalog.v2

Catalog.v1

Control Plane

Policy

Service Meshes Today: Far from Ideal!

7

Frontend Recommend

Catalog.v2

Catalog.v1

Policy

Tight coupling of control planes and
dataplane implementations.

Control Plane A Control Plane B

Use diverse dataplanes

Service Meshes Today: Far from Ideal!

7

Frontend Recommend

Catalog.v2

Catalog.v1

P1 P2

Tight coupling of control planes and
dataplane implementations.

Broken abstractions lead to tedious
and error-prone policy specification.

P1 P2

Control Plane A Control Plane B

Use diverse dataplanes

Specify rich policies

Service Meshes Today: Far from Ideal!

7

Frontend Recommend

Catalog.v2

Catalog.v1

Tight coupling of control planes and
dataplane implementations.

Broken abstractions lead to tedious
and error-prone policy specification.

Control planes are application- and
policy- unaware.

P1 P2

Control Plane A Control Plane B

P1 P2

P1 P2

P1 P2P1 P2

Use diverse dataplanes

Specify rich policies

Minimal overhead of mesh

Our Proposal: Copper and Wire

8

Frontend Recommend

Catalog.v2

Catalog.v1

P1 P2

P1 P2

P1 P2

P1 P2P1 P2

High-level abstraction for
dataplane functionality, ACTs

Wire Control Plane

Use diverse dataplanes

Specify rich policies

Minimal overhead of mesh

Broken abstractions lead to tedious
and error-prone policy specification.

Control planes are application- and
policy- unaware.

Our Proposal: Copper and Wire

8

Frontend Recommend

Catalog.v2

Catalog.v1

Copper
Policy

High-level abstraction for
dataplane functionality, ACTs

Specify policies over paths
using run-time contexts

Policy Policy Policy

Policy

Wire Control Plane

Use diverse dataplanes

Specify rich policies

Minimal overhead of mesh
Control planes are application- and

policy- unaware.

Our Proposal: Copper and Wire

8

Frontend Recommend

Catalog.v2

Catalog.v1

Copper
Policy

High-level abstraction for
dataplane functionality, ACTs

Specify policies over paths
using run-time contexts

Eliminate redundant sidecars
using clever optimizations.

Policy Policy

Wire Control Plane

Use diverse dataplanes

Specify rich policies

Minimal overhead of mesh

Drawback: Dataplane Heterogeneity not Well-Supported

• To extract maximum performance, developers must use different dataplanes!

9

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Dataplane Features Performance

P1, P2

P1

P1: Circuit breaking policy (at most
100 requests at a time)

P2: Drop requests with `free’ header.

Dataplane A

Dataplane B

Drawback: Dataplane Heterogeneity not Well-Supported

• To extract maximum performance, developers must use different dataplanes.

• Problem: Same policy may require intricate configurations for each dataplane!

10

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

kind: DestinationRule

...

trafficPolicy:

 connectionPool:

 tcp:

 maxConnections: 1

 http:

 maxRequestsPerConnection: 100

kind: CiliumClusterEnvoyConfig

...

circuit_breakers:

 thresholds:

 - priority: "DEFAULT"

 max_requests: 100

 max_pending_requests: 100

Dataplane BDataplane A
P1: Circuit breaking policy (at most

100 requests at a time)
P2: Drop requests with `free’ header.

Drawback: Dataplane Heterogeneity not Well-Supported

• To extract maximum performance, developers must use different dataplanes.

• Problem: Same policy may require intricate configurations for each dataplane!

• Problem: Developers need to manually configure separate control planes!

11

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

P1: Circuit breaking policy (at most
100 requests at a time)

P2: Drop requests with `free’ header.
Frontend

Catalog.v2

Catalog.v1

Control Plane A Control Plane B

P1 P2 P1

Recommend

Idea: Abstract Communication Types ()

• Identify the common object used by all dataplanes and all policies.
• Elevate as a first-class citizen in programming (OpenFlow-inspired)

• Use standard polymorphism and OOP to represent dataplane functionality.

12

ACTs

Deny(.)
GetHeader(.)
SetHeader(.)

...

GetStatusCode(.)
GetHeader(.)
SetHeader(.)

...

SetTimeout(.)
SetMaxOpenConnections(.)

...

ACTs

Request Response Connection

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

⇒ Dataplane Interfaces

• ACTs can be derived to express dataplane functionality.
• Request ⇒ HTTPRequest, gRPCRequest, etc.

• Connection ⇒ TCPConnection, HTTPConnection, etc.

13

ACTs

Deny(.)
GetHeader(.)
SetHeader(.)

...

Request

Deny(.)
GetHeader(.)
SetHeader(.)
SetDeadline(.)

gRPCRequest

Deny(.)
GetHeader(.)
SetHeader(.)

RouteToVersion(.)

HTTPRequest

Dataplane A
Interface

Dataplane B
Interface

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Drawback: Specifying Rich Policies is Hard

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

14

Policy P1

Destination
Service

- route:

 - destination:

 host: catalog

 subset: v2

 weight: 50

 - destination:

 host: catalog

 subset: v1

 weight: 50

hosts:

- catalog

http:

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P1

P1

But the given policy must only execute
over requests from Frontend!

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Drawback: Specifying Rich Policies is Hard

15

Policy P2

Add fromFE header to
only the requests to
Recommend service.

hosts:

- recommend

http:

- headers:

 request:

 add:

 fromFE: true

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P2

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy P1

- route:

 - destination:

 host: catalog

 subset: v2

 weight: 50

 - destination:

 host: catalog

 subset: v1

 weight: 50

hosts:

- catalog

http:
- match:

 - headers:

 fromFE:

 exact: true

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

P1

P1

Drawback: Specifying Rich Policies is Hard

15

Policy P2

Add fromFE header to
only the requests to
Recommend service.

hosts:

- recommend

http:

- headers:

 request:

 add:

 fromFE: true

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P2

Modify source code to
propagate the header

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy P1

- route:

 - destination:

 host: catalog

 subset: v2

 weight: 50

 - destination:

 host: catalog

 subset: v1

 weight: 50

hosts:

- catalog

http:
- match:

 - headers:

 fromFE:

 exact: true

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

P1

P1

Drawback: Specifying Rich Policies is Hard

15

Policy P2

Add fromFE header to
only the requests to
Recommend service.

hosts:

- recommend

http:

- headers:

 request:

 add:

 fromFE: true

Complicates policy specification as developers need to manually “break-down” the policies!
Makes microservice modifications challenging as policies only work for specific application graphs!

Frontend

Admin

Recommend

Catalog.v2

Catalog.v1

P2

Modify source code to
propagate the header

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy P1

- route:

 - destination:

 host: catalog

 subset: v2

 weight: 50

 - destination:

 host: catalog

 subset: v1

 weight: 50

hosts:

- catalog

http:
- match:

 - headers:

 fromFE:

 exact: true

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

P1

P1

Run-time Contexts

• Copper policies are specified over concrete instantiations of ACTs, each
associated with a run-time context.

• The run-time context carries the history of events leading to an object.

16

Frontend (F) Reco. (R) Catalog (C)

Ctx: (F, r1, R) Ctx: (F, r1, R), (R, r2, C)

r2r1
Frontend (F) Reco. (R)

Ctx: (F, c, R)

c

Connection type objects Request/Response type objects

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy Expression over Context Patterns

Context patterns = regular expressions of context strings.

• Policy specification is independent of intermediate services.

• Multiple request paths can be expressed under a single policy.

17

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Frontend (F) Reco. (R) Catalog (C)

Ctx: F->R->C

r

Apply policy over context pattern: “Frontend.*Catalog”

Policy Expression over Context Patterns

Context patterns = regular expressions of context strings.

• Policy specification is independent of intermediate services.

• Multiple request paths can be expressed under a single policy.

17

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Frontend (F) Reco. (R) Catalog (C)

Ctx: F->R->C

r

Admin (A)

Apply policy over context pattern: “Frontend.*Catalog”

Ctx: F->A->C

r

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 using (FloatState sampler)

 context ("Frontend.*Catalog")

) {

 GetRandomSample(sampler);

 if (IsLessThan(sampler, 0.5)) {

 RouteToVersion(req, 'Catalog', 'v1');

 } else {

 RouteToVersion(req, 'Catalog', 'v2');

 }

}

Copper Policy Programs

18

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

Copper Policy Program

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 using (FloatState sampler)

 context ("Frontend.*Catalog")

) {

 GetRandomSample(sampler);

 if (IsLessThan(sampler, 0.5)) {

 RouteToVersion(req, 'Catalog', 'v1');

 } else {

 RouteToVersion(req, 'Catalog', 'v2');

 }

}

Copper Policy Programs

18

import common.cui;

state FloatState{

 action GetRandomSample(self),

 action IsLessThan(self, float value),

}

act RPCRequest: Request{

 action Deny(self),

 action GetHeader(self, string header),

 action SetHeader(self, string header,

 string value),

 action RouteToVersion(self, string service,

 string label),

}

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

Copper Policy Program Dataplane Interface

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 using (FloatState sampler)

 context ("Frontend.*Catalog")

) {

 GetRandomSample(sampler);

 if (IsLessThan(sampler, 0.5)) {

 RouteToVersion(req, 'Catalog', 'v1');

 } else {

 RouteToVersion(req, 'Catalog', 'v2');

 }

}

Copper Policy Programs

18

import common.cui;

state FloatState{

 action GetRandomSample(self),

 action IsLessThan(self, float value),

}

act RPCRequest: Request{

 action Deny(self),

 action GetHeader(self, string header),

 action SetHeader(self, string header,

 string value),

 action RouteToVersion(self, string service,

 string label),

}

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Policy: Distribute requests from Frontend to the two versions of Catalog in 50:50 ratio

Specify context
pattern

Specify policy logic, using conditionals and
supported states.

Copper Policy Program Dataplane Interface

Drawback: Sidecars Impose Overheads

• L7 processing imposes latency overheads

19

Frontend Search Geo Mongo

(Microservice chain from HotelReservation1 benchmark)

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, et. al. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Drawback: Sidecars Impose Overheads

• L7 processing imposes latency overheads

19

Frontend Search Geo Mongo

Sidecar

(Microservice chain from HotelReservation1 benchmark)

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, et. al. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Drawback: Sidecars Impose Overheads

• L7 processing imposes latency overheads

19

Frontend Search Geo Mongo

Sidecar Sidecar

(Microservice chain from HotelReservation1 benchmark)

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, et. al. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Drawback: Sidecars Impose Overheads

• L7 processing imposes latency overheads

19

Frontend Search Geo Mongo

Sidecar Sidecar Sidecar

(Microservice chain from HotelReservation1 benchmark)

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, et. al. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Drawback: Sidecars Impose Overheads

• L7 processing imposes latency overheads

19

Frontend Search Geo Mongo

Sidecar Sidecar Sidecar Sidecar

(Microservice chain from HotelReservation1 benchmark)

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, et. al. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Pruning Redundant Sidecars

Prune redundant sidecars using:

20

Frontend

Admin

Recommend Catalog

P2
P1

P2
P1

P2
P1

P2
P1

P1: Set a deadline for requests to Catalog
P2: Attach a `region’ header to requests

from Frontend to Recommend

Example policies shown above

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Pruning Redundant Sidecars

Prune redundant sidecars using:

• Application graphs: service communication
graph

20

Frontend

Admin

Recommend Catalog

P2
P1

P2
P1

P2
P1

P2
P1

P1: Set a deadline for requests to Catalog
P2: Attach a `region’ header to requests

from Frontend to Recommend

Example policies shown above

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Pruning Redundant Sidecars

Prune redundant sidecars using:

• Application graphs: service communication
graph

20

Frontend

Admin

Recommend Catalog

P2
P1

P1

P1: Set a deadline for requests to Catalog
P2: Attach a `region’ header to requests

from Frontend to Recommend

Example policies shown above

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Pruning Redundant Sidecars

Prune redundant sidecars using:

• Application graphs: service communication
graph

• Policy semantics: where a policy can be
correctly executed

• For example, P2 can be enforced at the sidecar of
either Frontend or Recommend

20

Frontend

Admin

Recommend Catalog

P1

P1

P1: Set a deadline for requests to Catalog
P2: Attach a `region’ header to requests

from Frontend to Recommend

Example policies shown above

P2

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

Pruning Redundant Sidecars

Prune redundant sidecars using:

• Application graphs: service communication
graph

• Policy semantics: where a policy can be
correctly executed

• For example, P2 can be enforced at the sidecar of
either Frontend or Recommend

20

Frontend

Admin

Recommend Catalog

P1

P1

P1: Set a deadline for requests to Catalog
P2: Attach a `region’ header to requests

from Frontend to Recommend

Example policies shown above

P2

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

[Egress]

action RouteToVersion(self, string service, string label)

Use Action Annotations in dataplane interfaces
to extract policy execution semantics.

Dataplane Optimization by Wire: Overview

21

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

A
B

C
D E

Context patterns from user policies

• A policy can correctly execute at the
terminal pair of the context pattern.

“A.*DE” can only be checked at D or E!

ACTs and Action Annotations from Interfaces

// Dataplane A interface

action GetHeader(self, string header)

// Dataplane B interface

action GetHeader(self, string header)

action SetDeadline(self, float deadline)

• A dataplane can only support the
functions listed in its interface.

Dataplane Optimization by Wire: Overview

21

Part 1: Supporting Diverse Dataplanes | Part 2: Enabling Rich Policies | Part 3: Pruning Redundant Sidecars

A
B

C
D E

Context patterns from user policies

• A policy can correctly execute at the
terminal pair of the context pattern.

“A.*DE” can only be checked at D or E!

ACTs and Action Annotations from Interfaces

// Dataplane A interface

action GetHeader(self, string header)

// Dataplane B interface

action GetHeader(self, string header)

action SetDeadline(self, float deadline)

• A dataplane can only support the
functions listed in its interface.

Model these as constraints to an SMT solver!

Evaluation Questions

• Does Copper help enable simple and expressive mesh policies relative to today’s
approaches?

• How beneficial is Wire for real-world applications in lowering dataplane overhead?

• Does Wire help in enabling the effective use of multiple dataplanes compared to today’s
best approaches?

• What is the scalability of the Wire control plane?

• What are the overheads of using the eBPF add-on?

22

Evaluation Questions

• Does Copper help enable simple and expressive mesh policies relative to today’s
approaches?

• How beneficial is Wire for real-world applications in lowering dataplane overhead?

• Does Wire help in enabling the effective use of multiple dataplanes compared to today’s
best approaches?

• What is the scalability of the Wire control plane?

• What are the overheads of using the eBPF add-on?

22

In this talk

Does Copper Simplify Policy Expression?

Against Istio, Copper policies are significantly smaller and easier to write.

23

Header
Manipulation

Traffic
Management

Access
Control

Rate Limiting

Can Wire Lower Dataplane Overheads?

• Comparison controllers:
• Istio: Default control plane

• Istio++: Default control plane + knowledge of application graph to prune sidecars.

 [The best developers can get today via significant manual effort.]

• Wire: Uses application graph + policy semantics to optimize the data plane.

• Testbed: 80-core Cloudlab cluster, consisting of 4 nodes each with 20-core
Xeon CPU@2.40GHz and 64GB RAM

24

Can Wire Lower Dataplane Overheads?

Enforced policy: Header manipulation rules for a set of contexts

By systematically reducing sidecars, Wire’s configured dataplane can sustain
higher throughput.

25

Can Wire Lower Dataplane Overheads?

Enforced policy: Header manipulation rules for a set of contexts

By systematically reducing sidecars, Wire’s configured dataplane can sustain
higher throughput.

25

Istio sidecar

Can Wire Lower Dataplane Overheads?

Enforced policy: Header manipulation rules for a set of contexts

By systematically reducing sidecars, Wire’s configured dataplane can sustain
higher throughput.

25

Istio sidecar Istio++ sidecar

Can Wire Lower Dataplane Overheads?

Enforced policy: Header manipulation rules for a set of contexts

By systematically reducing sidecars, Wire’s configured dataplane can sustain
higher throughput.

25

Istio sidecar Istio++ sidecar Wire sidecar

Copper Wire: Summary

26

act RPCRequest: Request{

}

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 context (“A.*D")

) {

}

policy.cupinterface.cui

act HTTPRequest: Request{

}

A new abstraction for
dataplanes to express
their functionalities.

Policy specification
over contexts is easy

and intuitive.

Copper Wire: Summary

26

Using application graph,
policy contexts, and policy
semantics, Wire minimizes

dataplane overheads.

act RPCRequest: Request{

}

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 context (“A.*D")

) {

}

policy.cup
A

B

C
D

interface.cui

act HTTPRequest: Request{

}

Wire Control Plane

Optimal Dataplane Sidecars

A new abstraction for
dataplanes to express
their functionalities.

Policy specification
over contexts is easy

and intuitive.

Copper Wire: Summary

26

Using application graph,
policy contexts, and policy
semantics, Wire minimizes

dataplane overheads.

eBPF add-ons perform
context propagation,

avoiding heavy sidecars.

act RPCRequest: Request{

}

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 context (“A.*D")

) {

}

policy.cup

eBPF

eBPF

eBPF

eBPF

A
B

C
D

interface.cui

act HTTPRequest: Request{

}

Wire Control Plane

Optimal Dataplane Sidecars

A new abstraction for
dataplanes to express
their functionalities.

Policy specification
over contexts is easy

and intuitive.

Copper Wire: Summary

26

Using application graph,
policy contexts, and policy
semantics, Wire minimizes

dataplane overheads.

eBPF add-ons perform
context propagation,

avoiding heavy sidecars.

act RPCRequest: Request{

}

import "interface.cui"

policy distribute (

 act (RPCRequest req)

 context (“A.*D")

) {

}

policy.cup

eBPF

eBPF

eBPF

eBPF

A
B

C
D

interface.cui

act HTTPRequest: Request{

}

Wire Control Plane

Optimal Dataplane Sidecars

A new abstraction for
dataplanes to express
their functionalities.

Policy specification
over contexts is easy

and intuitive.

With Copper Wire, we redesign the entire service mesh stack leading to
simpler policy specification and better performance

Thank You!
Questions?

 Divyanshu Saxena (dsaxena@cs.utexas.edu)

 https://divyanshusaxena.github.io/

27

mailto:dsaxena@cs.utexas.edu

	Default Section
	Slide 1: Bridging Expressiveness and Performance for Service Mesh Policies

	Background
	Slide 2: Increasing Adoption of Microservices
	Slide 3: Communication in Microservice Applications
	Slide 4: Communication in Microservice Applications
	Slide 5: Service Meshes for Policy Enforcement
	Slide 6: Service Meshes for Policy Enforcement
	Slide 7: Service Meshes for Policy Enforcement
	Slide 8: Variety of Service Mesh Offerings
	Slide 9: Variety of Service Mesh Offerings
	Slide 10: Service Meshes: Ideal Vision
	Slide 11: Service Meshes: Ideal Vision
	Slide 12: Service Meshes: Ideal Vision
	Slide 13: Service Meshes: Ideal Vision
	Slide 14: Service Meshes Today: Far from Ideal!
	Slide 15: Service Meshes Today: Far from Ideal!
	Slide 16: Service Meshes Today: Far from Ideal!
	Slide 17: Service Meshes Today: Far from Ideal!
	Slide 18: Our Proposal: Copper and Wire
	Slide 19: Our Proposal: Copper and Wire
	Slide 20: Our Proposal: Copper and Wire

	ACTs
	Slide 21: Drawback: Dataplane Heterogeneity not Well-Supported
	Slide 22: Drawback: Dataplane Heterogeneity not Well-Supported
	Slide 23: Drawback: Dataplane Heterogeneity not Well-Supported
	Slide 24: Idea: Abstract Communication Types ()
	Slide 25: ⇒ Dataplane Interfaces

	Contexts
	Slide 26: Drawback: Specifying Rich Policies is Hard
	Slide 27: Drawback: Specifying Rich Policies is Hard
	Slide 28: Drawback: Specifying Rich Policies is Hard
	Slide 29: Drawback: Specifying Rich Policies is Hard
	Slide 30: Run-time Contexts
	Slide 31: Policy Expression over Context Patterns
	Slide 32: Policy Expression over Context Patterns
	Slide 33: Copper Policy Programs
	Slide 34: Copper Policy Programs
	Slide 35: Copper Policy Programs

	Wire and eBPF
	Slide 36: Drawback: Sidecars Impose Overheads
	Slide 37: Drawback: Sidecars Impose Overheads
	Slide 38: Drawback: Sidecars Impose Overheads
	Slide 39: Drawback: Sidecars Impose Overheads
	Slide 40: Drawback: Sidecars Impose Overheads
	Slide 41: Pruning Redundant Sidecars
	Slide 42: Pruning Redundant Sidecars
	Slide 43: Pruning Redundant Sidecars
	Slide 44: Pruning Redundant Sidecars
	Slide 45: Pruning Redundant Sidecars
	Slide 46: Dataplane Optimization by Wire: Overview
	Slide 47: Dataplane Optimization by Wire: Overview

	Evaluation
	Slide 48: Evaluation Questions
	Slide 49: Evaluation Questions
	Slide 50: Does Copper Simplify Policy Expression?
	Slide 51: Can Wire Lower Dataplane Overheads?
	Slide 52: Can Wire Lower Dataplane Overheads?
	Slide 53: Can Wire Lower Dataplane Overheads?
	Slide 54: Can Wire Lower Dataplane Overheads?
	Slide 55: Can Wire Lower Dataplane Overheads?

	Putting it Together
	Slide 56: Copper Wire: Summary
	Slide 57: Copper Wire: Summary
	Slide 58: Copper Wire: Summary
	Slide 59: Copper Wire: Summary
	Slide 60: Thank You!

