
Copper and Wire: Bridging Expressiveness and
Performance for Service Mesh Policies

Divyanshu Saxena

dsaxena@cs.utexas.edu
The University of Texas at Austin

Austin, USA

William Zhang

wtzhang23@gmail.com
The University of Texas at Austin

Austin, USA

Shankara Pailoor

spailoor@cs.utexas.edu
The University of Texas at Austin

Austin, USA

Isil Dillig

isil@cs.utexas.edu
The University of Texas at Austin

Austin, USA

Aditya Akella

akella@cs.utexas.edu
The University of Texas at Austin

Austin, USA

Abstract
Distributed microservice applications require a convenient

means of controlling L7 communication between services.

Service meshes have emerged as a popular approach to

achieving this. However, current service mesh frameworks

are difficult to use – they burden developers in realizing

even simple communication policies, lack compatibility with

diverse dataplanes, and introduce performance and resource

overheads. We identify the root causes of these drawbacks

and propose a ground-up new mesh architecture that over-

comes them. We develop novel abstractions for mesh com-

munication, a new mesh policy language centered on these

abstractions to enable expressive policies, and a novel con-

trol plane that enables using minimal dataplane resources

for policy enforcement. We develop the precise semantics

of our language abstractions and demonstrate how our con-

trol plane can use them to execute policies correctly and

optimally. We build and evaluate a prototype on realistic

workloads and policies and open-source production traces.

Our results show that complex policies can be specified in

up to 6.75× fewer lines, enforced with up to 2.6× smaller tail

latencies and up to 39% fewer CPU resources than today.

CCS Concepts: • Networks → Programming interfaces;
Programmable networks; Network management.

Keywords: Service Mesh, Microservices, Cloud Computing

ACM Reference Format:
Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig,

and Aditya Akella. 2025. Copper and Wire: Bridging Expressive-

ness and Performance for Service Mesh Policies. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS

This work is licensed under a Creative Commons

Attribution International 4.0 License.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0698-1/25/03

https://doi.org/10.1145/3669940.3707257

’25), March 30–April 3, 2025, Rotterdam, Netherlands. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3669940.3707257

1 Introduction
Organizations are increasingly migrating from monolithic

applications to distributed microservice deployments [23].

In a microservice architecture, network communication is

critical, necessitating policies for access control, telemetry,

traffic management, authorization, etc. These policies can

be complex, involving fine-grained control over layer 7 re-

quests/responses and connections. However, incorporating

them directly into the application complicates application

design and deployment, especially amidst dynamic policy up-

dates. Service meshes [4, 5, 8, 11, 32] have emerged to address

this challenge by abstracting communication policies into

separate sidecar containers deployed alongside each service

container. The sidecars collectively form the dataplane for

the service mesh. The mesh control plane receives developer

policies and configures the dataplane.

Ideally, service meshes should allow developers to easily

roll out rich policies matching the sophistication of their

applications and deploy them with minimal overhead. Unfor-

tunately, current mesh designs severely constrain developers.

First, it is difficult for developers to realize expressive com-
munication policies easily. Today’s mesh control- and data-

planes only allow control over requests targeted at a service,
but microservice communication involves request sequences,
where the processing of a request triggers another. Develop-

ers wishing to write policies for such sequences of requests

may need to write multiple ‘sub-policies’ targeting different

services to realize even simple policies (§2). The process may

also involve manually identifying which outgoing request

was triggered by an incoming request which today also neces-

sitates application source modification (§2); to make matters

worse, this may have to be repeated with every change to the

application’s structure, such as the addition of a microservice.

In addition, today’s control planes expose narrow controls

over specific dataplane features, forcing developers to in-

tricately understand the dataplane sidecar to realize richer

policies. Furthermore, today’s control plane policy interfaces

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707257
https://doi.org/10.1145/3669940.3707257

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

tightly couple control planes to the underlying dataplane

designs making it challenging for developers to leverage

rich features in diverse dataplanes. In particular, developers

wanting to use multiple distinct dataplane proxies – e.g., to

exploit the feature-performance tradeoffs between different

dataplane sidecars – must use multiple control planes, one

per dataplane. Similar issues arise when developers attempt

to exploit newly-proposed dataplane features (§2).

Second, the end-to-end overhead imposed by servicemeshes

is significant. We argue (§2) that this is architecturally rooted

in control planes lacking information about the application

communication and dataplane semantics. Together, these

preclude informed placement of policies across sidecars. The

resulting superfluous use of sidecars (§2) – which today

amounts to deploying a sidecar configured with all mesh

policies at every service– results in significant latency infla-

tion and CPU/memory overheads.

We address these drawbacks via a principled re-architecting

of service meshes with Copper, a new mesh policy language,

and Wire, a new mesh control plane (Figure 1).

We introduce abstract communication types (ACTs), a novel
abstraction to capture the entities of interest in microservice

communication (e.g., requests, connections) and the actions

that can be performed on them. ACTs break the coupling
between data and control planes such that dataplane-specific

details are transparent to policy specifications, freeing de-

velopers from dealing with low-level understanding of the

dataplane. In our approach, dataplanes vendors expose their

functionality through interfaces, where they can sub-type a

small set of generic ACTs to create new ACTs, allowing them

to define their own ACTs and actions. Developers can then

use these interfaces as header files in their policies, enabling

policy expression for diverse, heterogeneous dataplanes.
Copper achieves rich policy specification by tracking – and

enabling policy expression over – context patterns. Copper
policies operate on instances of ACTs (e.g., a specific re-

quest), each tagged with the sequence of events leading to

its creation, which we call its run-time context. Policies are
defined over context patterns encoded as regular expressions

– thus eliding the exact event sequence and exposing only

relevant parts for policy execution. This design simplifies

policy writing, as developers don’t need to write multiple

policies for each service involved in the target sequence, and

policies remain unaffected by changes to an application’s

microservice architecture. In order to track run-time con-

texts at low overhead, we further develop an eBPF-based

dataplane add-on. We show how to implement this within

the constraints of the eBPF verifier, imposing a mere 10𝜇s

overhead on request processing.

Wire is a performance-oriented control plane that enables

control over sidecar overheads by using key aspects of policy

and application semantics. To assist Wire, Copper’s data-

plane interfaces include simple annotations indicating where

an ACT action can be correctly executed (§4.1.3). Wire uses

these annotations, along with the application graph and ACT

type/subtype relationships in a MaxSAT formulation to de-

termine the fewest sidecars to deploy, which dataplanes to

use, and the policies for each sidecar (§5).

We describe the precise semantics of the key components

of our approach – ACTs, contexts, interfaces, and the Copper

policy language. Using the semantics, we formally prove

that our framework correctly enforces arbitrary developer-

specified policies at minimal dataplane cost.

We evaluate a prototype of our framework using real-

istic workloads against today’s approaches. Our approach

finds a good sweet-spot between expressiveness, ease of use,

and performance. We show that Copper policies are simpler,

more intuitive to write, and up to 6.75× smaller than the

policies required by existing meshes – several policies can

be expressed in less than 10 lines in Copper! By systemat-

ically reducing sidecars, Wire can offer up to 2.6× smaller

tail latencies and 3× higher throughput, and also yield up

to 39% and 52% lower CPU and memory usage, respectively.

We also evaluate the efficacy of Wire on production traces,

demonstrating up to 64% fewer sidecars used.

In summary, we make the following contributions:

• We propose ACTs that encapsulate the objects of interest

in microservice networks, and run-time contexts that

associate an ACT instance to an event sequence.

• We introduce Copper, a new mesh policy language that

uses ACTs and contexts to simplify policy expression.

• To track run-time contexts at low overhead, we design an

eBPF-based add-on to extend today’s mesh dataplane.

• We design the Wire control plane that optimizes the data-

plane to enforce Copper policies with minimal overheads.

• We evaluate our prototype on realistic workloads, demon-

strating significant improvement overmodern frameworks.

2 Background and Motivation
In a microservice architecture, each incoming request may

invoke a subset of services via cascading requests (e.g., via
RPCs) [23]. For large deployments, requests can traverse

different subsets of services, resulting in complex commu-

nication patterns. To manage this, application developers

commonly impose a variety of policies, such as for traffic

management, telemetry, or access control. These policies of-

ten require fine-grained control over individual requests. For

example, a service might want to deny only those requests

that have a ‘beta’ header. Similarly, common deployment

practices like canary releases and A/B testing necessitate

routing requests to the appropriate service version.

Implementing these management features within applica-

tion code increases developer burden and makes deployment

and troubleshooting challenging. To address this, the service

mesh was devised as a separate infrastructure layer that de-
couples application logic from communication policies [20].

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Frontend Recommend prod-Catalog

β-Catalog

DB

Service Container
Sidecar

P1 P2 P1 P2 P1 P2

P1 P2

P1 P2

Mesh Control Plane

ConfigurePolicies

Service

Legend

hosts:
- recommend
http:
- match:
 - sourceLabels:
 svc: frontend
- headers:
 request:
 add:
 fromFE: true

Policy P2
hosts:
- catalog
http:
- match:
 - headers:
 fromFE:
 exact: true
- route:
 - destination:
 host: catalog
 subset: beta
 weight: 50
 - destination:
 host: catalog
 subset: prod
 weight: 50

Policy P1

(a) Workflow in current frameworks.

Frontend Recommend prod-Catalog

β-Catalog

DB
Policy

Wire Control Plane

ConfigureCopper
Policy

/* Dataplane functions declared in
interface.cui */
import "interface.cui";
policy distribute_requests (
 act (RPCRequest request)
 using (FloatState sampler)
 context ("frontend.*catalog")
) {
 [Egress]
 GetRandomSample(sampler);
 if (IsLessThan(sampler, 0.5)) {
 RouteToVersion(req, 'Catalog', 'beta');
 } else {
 RouteToVersion(req, 'Catalog', 'prod');
 }
}

(b) Workflow with Copper Wire.

Figure 1. Enforcing the policy: "Distribute requests from Frontend to the two versions of Catalog in a 50:50 ratio" in (a) Today’s frameworks:

Developers need to write multiple sub-policies for different services. Control planes deploy them using heavy sidecars at all services. (b)

With Copper Wire: A single, simple, and intuitive policy that Wire can enforce using just 1 sidecar!

2.1 Current Service Mesh Frameworks
Service meshes are typically implemented by attaching prox-
ies or sidecars (e.g., Envoy [2]) to each application pod. The

proxy intercepts all traffic to and from the application, and

executes filters to perform various functions such as rout-

ing, header manipulation, and security. Configuring these

filters can be very tedious and intricate, therefore, service

meshes comprise of a control plane that provides a high-level
interface to configure the proxies. Popular control planes,

such as Istio [4] and Cilium [8] provide a YAML-based API

to the users to write policies, and then suitably configure the

dataplane proxies. An example policy is shown in Figure 1a.

2.2 Drawbacks in current frameworks
We describe the workflow and three key drawbacks of to-
day’s service meshes using an example from [12] (Figure 1a).

Suppose a developer wishes to impose the policy: "distribute

requests from Frontend to the two versions (prod and beta)

of Catalog in a 50:50 ratio". Note that this policy should apply

to the requests from Recommend to Catalog, provided these

requests are triggered by a prior request from Frontend.

1. Difficulty in realizing policies: State-of-the-art mesh

control planes, like Istio [4], use microservice endpoints (i.e.,
hosts or services) as policy handles. Consequently, develop-

ers must break down their intended policy, writing separate

per-service policies for traffic destined for different services.

In Figure 1a, the developer must specify policy P1 to dis-

tribute requests to Catalog between its prod and beta ver-

sions. However, just P1 is insufficient because the intent is

to only apply to requests originating at Frontend. Since only

Recommend sends requests to Catalog, the sidecar at Recommend

must identify if an outgoing request to Catalogwas triggered

by a request from Frontend and then apply the policy. Ex-

isting dataplanes do not support this natively, so additional

steps are needed, including modifying application logic:

I. Uniquely tag requests from Frontend:Write a policy to add a

custom header fromFE: true to each request from Frontend

to Recommend, as shown by Policy P2 in Figure 1a.

II. Map incoming requests at Recommend to outgoing ones: Since
the requests from Frontend are terminated at Recommend, the

developer must modify the service logic for Recommend to

propagate the fromFE header from the incoming request to

the new outgoing request to Catalog.

III. Specify the traffic distribution policy: At this point, Policy
P1 can be applied to check all requests destined to Catalog

whether they have the custom header and accordingly route

to prod/beta versions. Since only requests from Recommend

have the custom header this enforces the policy accurately.

These elaborate steps notwithstanding, developers strug-

gle with policy specification as mesh control planes only

offer narrow interfaces to common configuration knobs –

e.g., route, weight parameters for routing policies (Figure 1a)

– leaving the developer to configure other parameters of

interest directly at the dataplane, which requires intricate

knowledge (e.g., to configure rate limiting the developer

has to directly interact with Envoy
1
). Similarly, stateful/-

conditional policies (e.g., for sticky load-balancing
2
) are not

exposed by control plane APIs despite dataplane support.

Overall, ad-hoc, narrow control plane APIs and coarse

abstractions of service end-points as policy handles in exist-

ing control planes complicate policy specification; and, the

lack of a dataplane mechanism to identify request sequences

forces application source modifications.

2. Dataplane heterogeneity not well supported: Differ-
ent dataplane sidecars offer varying performance-functionality

tradeoffs. For instance, Istio proxy [4] is feature-rich but im-

poses a heavy performance penalty, while Cilium proxy [7]

and Linkerd [5] are lightweight but only support a limited

set of features. Developers may want to exploit these trade-

offs by using multiple dataplanes, e.g., using a lightweight

dataplane for simple policies and a feature-rich one for com-

plex policies. In today’s mesh architectures, however, control

1
This requires selecting appropriate rate limiter implementation, know-

ing how to add it to Envoy and then setting the specific (as many as 40!)

parameters [16]

2
Sticky load-balancing requires the requests of the same client to be routed

to the same destination, irrespective of the load balancing weights

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

none 1 2 3 all
0

10

20

30

L
at

en
cy

(m
s) 50 %ile

99 %ile

none1 2 3 all
0

4

8

12

C
P

U
U

sa
ge

(%
)

none1 2 3 all
0

4

8

12

M
em

.
U

sa
ge

(G
B

)

Figure 2. Overheads of mesh sidecars: We use a four-service chain

from Hotel Reservation [23], and incrementally add sidecars to the

services. X-axis shows the depth of the microservice graph until

which sidecars are injected. For a workload using 100 requests per

second, the 99 %-ile latency goes from 9.2ms to 27.5ms, while the

CPU usage increases from 5.7% to 10.65% as we add sidecars.

plane interfaces are tied to specific dataplanes. As a result,

developers wanting to use multiple dataplanes must manage

multiple control planes, each with separate configurations.

For a similar reason, dataplane upgrades are not well sup-

ported. New features added to the dataplane (e.g., to Envoy)

need to be first upstreamed by control plane (e.g., Istio) im-

plementers and then exposed to the policy writers via an

updated API, which can take months.

3. Control plane constrains dataplane performance:
Policies written by the developers are submitted to the mesh

control plane (as shown in Figure 1a), which configures the

sidecars accordingly. Current control planes are naive; e.g.,

they do not account for how an application’s services com-

municate. Thus, they configure each policy on all sidecars in
the dataplane – in turn, necessitating sidecars for all services
(Figure 1a). This exhaustive use of sidecars in today’s frame-

works leads to significant dataplane overheads [31, 32, 34].

Each sidecar constantly occupies CPU and memory and adds

significant latency due to L7 processing, e.g., parsing re-

quests, executing policy actions, and forwarding requests.

These overheads increase with the number of sidecars

in the system. We show a hop-by-hop analysis of sidecar

overheads in Figure 2; the overheads increase as we incre-

mentally add sidecars to the services of a microservice graph.

Note that not all policies are executed at all sidecars; e.g., in

Figure 1a, P1 and P2 are only executed at two of the sidecars

(Recommend and Frontend - shown by the dark boxes). Further

note that P1 just sets headers to requests from Frontend to

Recommend, so applying P1 at the sidecar of Recommend instead

of Frontend, can further reduce the sidecars needed to just

1. So, in theory, we could have reduced the overheads by

deploying just a single sidecar instead of 5, still ensuring cor-

rect policy execution. However, current control planes fail

to make this optimization as they are unaware of application

communication and policy execution semantics.

2.3 Related Work
Mesh policy specification. Numerous industry solutions

for service mesh policies exist, such as Istio [4], Cilium

Mesh [8], NGINXmesh [11], Linkerd [5], Consul Connect [15],

etc. However, these universally leverage coarse-grained pol-

icy handles and support only a dedicated dataplane. Ap-

proaches such as Rego [19] and [24], target "safety" policies

by introducing control flow and service tree abstractions,

respectively. Another work, AUTOARMOR [28], focuses on

automatic generation of access control policies by extract-

ing the request flow via static analysis of microservice code.

However, these policy simplification techniques cannot be

generalized to other service mesh needs, such as traffic man-

agement and telemetry. Additionally, they do not attempt to

support multiple dataplanes.

Dataplane heterogeneity in service meshes. ServiceR-
outer [32] is one attempt at using multiple dataplanes in a

single service mesh framework. It features a common RPC

library for four different types of L7 routers, but suffers from

the issue of being inextensible to new dataplanes for lack

of common dataplane abstractions. It also requires intrusive

application modification to link and use the RPC library.

Mesh overheads. MeshInsight [34] helps quantify and pre-

dict service mesh overheads whereas we focus on avoiding
it. Existing solutions for managing mesh overheads, such

as ServiceRouter [32], mRPC [21] and gRPC Proxyless [17],

heavily depend on linking a custom RPC library into the

application, which again is intrusive. It also breaks the trans-

parent sidecar abstraction provided by service meshes.

3 An Overview of Our Approach
To address today’s drawbacks we propose a new mesh ar-

chitecture with a domain-specific language, Copper, and

a co-designed, application-aware control plane, Wire. Our

framework’s salient aspects are (Figure 3):

A new abstraction for mesh communication. We pro-

pose Abstract Communication Types, or ACTs, (§4.1.1) that
serve as an interface between policy writers and dataplanes,

abstracting away low-level details of the dataplane and en-

abling dataplane-agnostic policies.

A clean interface to use dataplane features. Dataplanes
provide their functionalities in the form of Copper inter-
face files (§4.1.3). In Figure 3, step 1, dataplanes d1 and d2

express that they can perform SetDeadline and SetHeader

operations, respectively. Developers can use these interfaces

as headers in Copper policies.

Contexts. Our framework allows programmers to write

policies over contexts (highlighted text in step 2 in Figure 3)

expressed using regex patterns (§4.2). Each policy operates

on concrete ACT instances, which we call "communication

objects" (§4.1.2). Contexts allow rich encoding of service in-

teractions using a succinct regex representation.

An application- and policy-aware control plane.Wire

uses application graph, coupled with dataplane semantics

from Copper interfaces and policy information from Copper

programs, to place policies across a minimal number of side-

cars, optimizing the performance of the mesh dataplane (§5).

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1

L7Request
[SetDeadline]

policy.cupUser
2

import:
{spec_d1.cui,spec_d2.cui}
P1:{L7Request,
 context: 'A.*E',
 SetDeadline}
P2:{HttpRequest,
 context: '.*F',
 SetHeader}

Dataplane
Proxies

Developer and Dataplane Vendors Wire Control Plane

HttpRequest
[SetHeader]

spec_d1.cui

spec_d2.cui B
E

D

F

G
A

Copper
Policies

Placement Optimizer3

B
E

D

F

G
A

Registered
Dataplanes

spec_d1.cui
spec_d2.cui CompilerDataplane

Compiler

Proxy d1, Policy P1 Proxy d2, Policy P2

Application
Dependency Graph

Policies

A

d1
D

G

d1
B

eBPF
4

Mesh Dataplane

A➜D➜E

E
d2
F

Configurations

Policies and
Dataplane
Interfaces

Optimal
Dataplane

Configuration

Figure 3. Overview of our approach. 1○: Dataplane vendors provide interface files for their dataplanes. 2○: Developers use these interface

files to write Copper programs – P1 applies to requests from A to E, while policy P2 applies to all requests to F. 3○: Wire uses the application

graph and Copper programs to place policies across a minimal number of sidecars. Note that the SetDeadline function can only be executed

on the sender service, and is hence, executed on sidecars of services B and D, instead of being executed simply at E. 4○: An eBPF add-on

tracks contexts in the datapath – the context A→D→E implies the request from D to E was triggered by a request from A to D.

act Request {
action Deny(self)
action GetHeader(self, header_name),
action SetHeader(self, header_name, header_value),

}
act Response {

action GetStatusCode(self),
action GetHeader(self, header_name),
action SetHeader(self, header_name, header_value)

}
act Connection {

action SetTimeout(self, timeout),
action SetMaxOpenConnections(self, max_conn)

}

Listing 1. Generic ACTs in Copper.

In Figure 3, Wire identifies that three sidecars are sufficient

to implement the policies (step 3).

A lightweight dataplane add-on to track contexts. En-
forcing such high-level policies requires the dataplane to

track the contexts. By default, a mesh architecture would

need to rely on sidecars at all services to propagate such

contexts, but this adds overhead. We avoid this by tracking

and propagating contexts in the datapath via a lightweight

and efficient eBPF-based dataplane add-on (§6), attached to

each service pod (step 4 in Figure 3).

4 The Copper Language
Copper is a high-level mesh language that enables writing

rich policies and supports diverse and evolving dataplanes.

4.1 Copper Building Blocks
4.1.1 Abstract CommunicationTypes. AnAbstract Com-

munication Type (ACT) encapsulates objects of interest to

microservice communication. Copper defines three generic
ACTs to represent commonly used network objects inmeshes

– requests, responses, or connections – and common actions

on them (see Listing 1). We intentionally keep the actions

on generic ACTs simple and limited in number, so that all

dataplanes can support them. As we show in §4.2, this is

crucial for enabling dataplane-agnostic policies.

Copper allows ACTs to be subtyped so that dataplane

vendors can define their own derived ACTs and specify sup-

ported actions on them,withoutworrying about the availabil-

ity of those features in other dataplanes or about the control

plane lifting them. For example, the Connection ACT can be

subtyped by a dataplane to define a TCPConnection ACT with

additional actions such as SetTCPKeepAlive, SetTCPNoDelay,

etc. Similarly, the Request class can derive various L7 request

types, such as HTTPRequest and gRPCRequest.

An ACT can be implemented in different ways by dat-

aplane vendors as long as they provide the functionality

exposed through the interface. For functions defined in the

generic ACTs (e.g., GetHeader), implementations across dif-

ferent dataplanes are expected to produce the same outputs.

Mesh policies operate over instances of ACTs, which we

refer to as communication objects, or COs for short. In a

microservice application, the creation of COs is triggered by

events. For instance, in our example from Figure 1a, a request

CO from Recommend to Catalog is triggered when Recommend

processes another request CO from Frontend.

4.1.2 Run-time Contexts. To support fine-grained con-

trol over COs, Copper associates each CO with a run-time
context that captures the sequence of events that led to

the creation of the object. Formally, we represent a CO as

𝑜 = (𝜏, 𝜎), where 𝜏 is the type of the object (e.g. Request,

Response, Connection, or any of the derived ACT types) and

𝜎 is a sequence of events [𝑒1, . . . , 𝑒𝑛] that triggered the cre-

ation of 𝑜 . We refer to 𝜎 as the run-time context of 𝑜 and

represent events as a triple (𝑠𝑖 , 𝑎𝑖 , 𝑑𝑖), where 𝑠𝑖 is the source
service that created the CO 𝑎𝑖 for destination service 𝑑𝑖 ; we

also denote 𝑠𝑖 and 𝑑𝑖 with S(𝑎𝑖) and D(𝑎𝑖), respectively.
The event sequence is causal: for consecutive events (𝑠𝑖 , 𝑎𝑖 , 𝑑𝑖)

and (𝑠𝑖+1, 𝑎𝑖+1, 𝑑𝑖+1), the destination service 𝑑𝑖 of an earlier

event becomes the source for the next event (𝑑𝑖 = 𝑠𝑖+1), and
𝑎𝑖+1 is created as a consequence of 𝑑𝑖 receiving 𝑎𝑖 . Figure 4

shows an example of run-time contexts for cascading re-

quests. Current dataplanes do not track run-time contexts –

to this end, we use a lightweight eBPF add-on (§6).

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

Service S Service T Service U
Req r1

Resp r1'

Req r2

Resp r2'

add (T, r2, U)

add (U, r2', T)(S, r1, T), (T, r2, U), (U, r2', T), (T, r1', S)

(S, r1, T)

Figure 4. Run time contexts of COs: Solid boxes show the run-time

contexts and the dashed boxes show how the context gets modified.

Associated Service

Policy States
Ingress
Queue

Egress
QueueSidecar

Egress
Actions

Ingress
Actions

Figure 5. Sidecar model.

import common.cui;
state FloatState{

action GetRandomSample(self),
action IsLessThan(self, float value),

}
act RPCRequest: Request{

action GetHeader(self, string header_name),
action SetHeader(self, string header_name, string value),
action Deny(self),

[Egress]
action RouteToVersion(self, string service, string label),

}

Listing 2. An example dataplane interface that declares a

RPCRequest ACT that subtypes the generic Request ACT and

a state FloatState to operate over floating point numbers.

4.1.3 Copper Dataplane Interfaces. Before describing
our final building block – Copper interfaces – we present

the abstract sidecar model assumed by Copper and leveraged

in its interfaces (Figure 5): For a CO 𝑜1 directed to a service

𝑆 , the CO is received via the ingress queue at the sidecar and

the resulting CO from 𝑆 , 𝑜2, is sent via the egress queue of

the sidecar. When a CO is at the head of the ingress (egress)

queue, the sidecar can execute actions on it, called ingress
(egress) actions. These actions maymodify the CO or the side-

car state. We model the sidecar state as a triple 𝑆 = (Σ, 𝐼 , 𝐸)
where 𝐼 and 𝐸 denote the ingress and egress queues respec-

tively, and Σ corresponds to some sidecar-local state. Note

that a CO 𝑜 can only be operated upon by egress actions on

the egress queue at its source service S(𝑜). Similarly, a CO 𝑜

can only be operated upon by ingress actions on the ingress

queue at its destination service D(𝑜) (from the definitions of

S(𝑜) and D(𝑜) in §4.1.2).

Returning to the final building block, dataplane vendors ex-

pose their supported functionality through Copper interfaces.
A Copper interface must describe the ACTs the dataplane

supports and the supported state types that policy writers

can use to maintain state during policy execution.

Figure 6 presents the grammar for Copper interfaces, which

consists of a list of ACT and state type definitions. Each ACT

is declared using the notation act T1:T indicating that the

dataplane supports the T1 ACT, which is a subtype of T. Ac-

tions supported by the dataplane are indicated using the

Copper Interfaces:
⟨annotation⟩ ::= Ingress | Egress
⟨action⟩ ::= (⟨annotation⟩, ⟨action_name⟩, ⟨arg⟩*)
⟨act⟩ ::= (⟨act⟩?, ⟨action⟩+)
⟨state_action⟩ ::= (⟨action_name⟩, ⟨arg⟩*)
⟨state⟩ ::= (⟨state_action⟩+)
⟨interface⟩ ::= (⟨interface_name⟩, (⟨act⟩ | ⟨state⟩)+)
Copper Programs:
⟨expr ⟩ ::= ⟨action⟩

| ⟨state_action⟩
| if ⟨expr ⟩ ⟨expr ⟩ ⟨expr ⟩

⟨section⟩ ::= (⟨annotation⟩, ⟨expr ⟩+)
⟨policy⟩ ::= (⟨interface⟩+, ⟨act⟩, ⟨context⟩, ⟨state⟩?,

⟨section⟩+)
Figure 6. Grammar for Copper interfaces and policies.

action keyword. State types are similarly specified by the

state keyword along with the operations that can be per-

formed on the state. Listing 2 shows an example interface.

Using the ACT abstraction allows dataplanes to trans-

parently expose their functionalities to developers, without

relying on often incomplete and narrow control plane APIs.

As dataplanes evolve, the updated features can also be di-

rectly reflected in the dataplane interface, without waiting

for a control plane to expose them.

Action Annotations Copper requires dataplane vendors

to annotate their actions using two keywords - [Egress]

and [Ingress]. These annotations provide information on

whether the action semantics restrict it to run on the egress

queue or the ingress queue. For instance, the RouteToVersion

action on an RPC (Listing 2) can only be executed on the

client side of the RPC (when the request is being sent), and

hence, the egress queue of the sidecar. Given our sidecar

model, an action annotated by Egress is only well-defined

for a CO 𝑜 in the egress queue of the sidecar at S(𝑜). Similarly,

action annotated by Ingress is only well-defined for a CO 𝑜

in the ingress queue of the sidecar at D(𝑜).
Actions without any annotations (e.g. Deny in Listing 2)

are assumed to be able to run on either ingress or egress
queues. For actions with both annotations, it is assumed that

the action should execute on a CO at the egress queue of its

source service S(𝑜) and the ingress queue of its destination
service D(𝑜). The annotations are very simple but general

enough to specify the correct execution semantics for the

generic ACTs, and by extension, also for any derived ACTs.

We show the power of these annotations in §5 where they

help the control plane to optimize data plane performance.

4.2 Copper Policy Programs
Copper policy programs enable programmers to use the dat-

aplane interfaces to write policies on COs.

Figure 6 shows the syntax of Copper policies, and List-

ing 3 shows an example Copper policy. Every policy consists

of four parts: (i) the act annotation to specify the type of

the CO that this policy applies to, (ii) the using annotation

to specify what state the policy maintains, (iii) the context

keyword to specify a regular expression over the contexts

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

of COs on which the policy should apply (referred to as con-
text pattern), and (iv) the body of the policy to specify the

actions that should be performed on the CO. These policies

can be then compiled using a dataplane-provided compiler.

Notably, Copper policies allow the use of conditionals and

program-local states, enhancing the language’s expressive-

ness. Copper can support more complex use cases—such

as maintaining persistent states across COs for sticky load-

balancing; however, the dataplane compiler is responsible

for ensuring the correctness of the underlying actions.

Policy semantics Copper policies are executed on data-

plane sidecars. A Copper policy takes as input a CO 𝑜 , that

can be on the ingress or egress queue of that sidecar (Figure 5).

Each Copper policy has two separate sections annotated as

[Egress] and [Ingress], either of which can be empty but

not both at the same time. If 𝑜’s run-time context belongs

to the set of strings represented by the policy context (see

formal definition below), then the relevant portion of the

policy body is executed – if the communication object is on

the Ingress (resp. Egress) queue, then the statements found

in the Ingress (resp. Egress) section are executed.

Formally, Copper policies can be represented as a 4-tuple

(T ,𝐶,𝐴𝐸, 𝐴𝐼), where T specifies the target ACT, 𝐶 is a con-

text, expressed as a regular expression, and 𝐴𝐸 and 𝐴𝐼 are

sequences of actions that execute on the CO when it is in the

egress and ingress queues of the sidecar, respectively. We

say that a policy 𝜋 = (T ,𝐶,𝐴𝐸, 𝐴𝐼) matches a CO 𝑜 = (𝜏, 𝜎)
where 𝜎 = [(𝑠1, 𝑎1, 𝑠2), (𝑠2, 𝑎2, 𝑠3) . . . (𝑠𝑛, 𝑎𝑛, 𝑠𝑛+1)], iff (1) 𝜏 is

a subtype of T , and (2) the string 𝑠1𝑠2, . . . 𝑠𝑛+1 is accepted by

the regular expression 𝐶 .

Valid Context Patterns The sidecar model (Figure 5) dic-

tates that 𝐴𝐼 must only execute on a matching CO 𝑜 at the

ingress queue ofD(𝑜), and𝐴𝐸 must only execute on a match-

ing CO 𝑜 at the egress queue of S(𝑜). Hence, context patterns
that do not provide a unique source or destination service are

considered invalid. Thus, a valid context pattern in Copper

must have the form ‘𝐶′𝑆.’ or ‘𝐶′𝑆 ’, where𝐶′
is a general reg-

ular expression. The former pertains to COs with S(𝑜) = 𝑆

while the latter denotes COs with D(𝑜) = 𝑆 . The only excep-

tion to this rule is the context pattern ‘*’, which matches all

COs, and can be used to specify mesh-wide policies.

Example Copper Policy Consider the policy from Figure 1

of routing requests from Frontend to Catalog. The program-

mer can specify the context “Frontend.*Catalog” to match

all requests of interest. Listing 3 shows how this can be writ-

ten in Copper using the interface from Listing 2. Since the

interface annotates the RouteToVersion action as Egress, we

can use it only in the egress section of the policy.

Using regex context patterns simplifies policy writing by

(i) reducing the number of policies needed—for instance, one

policy for a context pattern versus multiple policies for each

service, and (ii) enabling policies to be written independently

of changes to the microservice architecture.

import "interface.cui";
policy route_requests (

act (RPCRequest request)
using (FloatState sampler)
context ('Frontend.*Catalog')

) {
[Egress]
GetRandomSample(sampler);
if (IsLessThan(sampler, 0.5)) {

RouteToVersion(request, 'Catalog', 'beta');
} else {

RouteToVersion(request, 'Catalog', 'prod');
}

}

Listing 3. An Example Policy Program

/* fast_interface.cui */
import "common.cui";
act L7Request: Request{

action Deny(self),
action GetHeader(self, string header_name),
action SetHeader(self, string header_name, string value),

}

/* policy2.cup */
import "interface.cui";
import "fast_interface.cui";
policy checkout_headers (

act (Request req)
context ('Checkout'.'Catalog')

) {
[Ingress]
SetHeader(req, 'low-priority', 'true');

}

Listing 4. Dataplane-agnostic Policy Example

Copper’s generic ACTs allow programmers to write poli-

cies independent of the underlying dataplane implementa-

tions, enabling users to leverage different dataplanes trans-

parently. In Figure 1, suppose a new Checkout service is

added that can send requests to the Catalog service. As it is

a newly added service, developers want to tag all requests

from Checkout with a low-priority header. They have at

their disposal two dataplanes: Proxy1 with interface in List-

ing 2 and a faster alternative, Proxy2 with interface in List-

ing 4. With Copper, the developers can write a generic policy

(Listing 4) that uses the SetHeader action on the generic

Request ACT (instead of specifying RPCRequest or L7Request

from Proxy1/Proxy2’s interfaces). The control plane then can

choose Proxy2 if no other policies require the RouteToVersion

action (only supported by Proxy1).

5 The Wire Control Plane
Wire is a mesh control plane that uses action semantics en-

coded in Copper interfaces to minimize the sidecar overhead.

Wire takes as input an application graph 𝐺 , a set of data-

planes 𝑇 , a set of Copper policies Π and returns an optimal

policy placement. Below, we define the graph and optimal

policy placement, and then describe a solver-aided technique

for finding such a placement.

For a microservice application, the application graph is a

directed graph 𝐺 (𝑉 , 𝐸) where the nodes 𝑉 are the services

and an edge (𝑢, 𝑣) ∈ 𝐸 indicates that 𝑢 can send a CO to 𝑣

directly. Such graphs are easy to collect [28], and have been

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

used for various purposes in microservice deployments, such

as autoscaling [33], performance analysis [25] and access

control policy generation [28].

A policy placement is a mapping Γ from services 𝑠 ∈ 𝑉 to

tuples (𝑇𝑠 ,Π𝑠) where 𝑇𝑠 ∈ 𝑇 is the sidecar to be attached to

𝑠 and Π𝑠 ⊆ Π are the policies that must run on the sidecar

of 𝑠 . A valid placement assigns policies to sidecars such

that every CO that should be processed by a policy will be
processed. Formally, a valid placement must assign a policy

𝜋 = (T ,𝐶,𝐴𝐸, 𝐴𝐼) to the sidecar of service S(𝑜) if 𝐴𝐸 ≠ ∅
and to D(𝑜) if 𝐴𝐼 ≠ ∅ for every matching CO 𝑜 .

We assume the user provides a cost 𝑐 ≥ 0 for each side-

car in 𝑇 . An optimal policy placement Γ𝑂𝑝𝑡
is a valid policy

placement that minimizes Σ𝑠∈Γ𝐶 (𝑇𝑠).
MaxSAT Reduction We now describe how Wire lever-

ages the information encoded in policies’ context patterns

and dataplane interfaces to reduce the optimal placement

problem to an instance of weighted MaxSAT [27]. MaxSAT

aims to satisfy some hard constraints while maximizing the

combined weight of satisfied soft constraints. We elide the

full details of our MaxSAT encoding for brevity, and only

describe the intuition and the key constraints here.

For a policy 𝜋 = (T ,𝐶,𝐴𝐸, 𝐴𝐼), Copper constrains the
context pattern 𝐶 to be of the form 𝐶′𝑆 or 𝐶′𝑆 (.) (see §4.2)
– any CO 𝑜 matching 𝜋 must either have source service

S(𝑜) = 𝑆 or destination service D(𝑜) = 𝑆 . Thus, the actions

𝐴𝐸 must execute at the set of source services of all matching

COs (denoted S𝜋), and the actions 𝐴𝐼 must execute at the

set of destination services of all matching COs (denoted

D𝜋). Note that S𝜋 and D𝜋 can be easily computed using the

context pattern 𝐶 and the graph 𝐺 . For contexts of the form

𝐶′𝑆 (.), S𝜋 is simply {𝑆} and for contexts of the form 𝐶′𝑆 , it
is the subset of in-neighbors of 𝑆 that are consistent with

the context 𝐶′
. Similar rules can be derived for D𝜋 as well.

However, oftentimes the actions specified under 𝐴𝐸 can

also be run under 𝐴𝐼 (and vice-versa). In particular, actions

without any annotations in the dataplane interface fall under

this category (see §4.1.3). Such actions only modify the CO

without any side-effects on the policy state at the sidecar,

e.g. GetHeader, SetHeader, etc. We refer to policies with such

actions as free-policies; for a matching CO 𝑜 for such a policy,

the actions 𝐴𝐸 (𝐴𝐼) can be safely executed at the ingress

(egress) queue at D(𝑜) (S(𝑜)) as well.
Finally, a policy 𝜋 may use actions that restrict the set

of sidecars that can support it (denoted 𝑇𝜋). Thus, if 𝜋 is

assigned to a service 𝑠 , the sidecar at 𝑠 must be one of 𝑇𝜋 .

Using the above observations, Wire generates three types

of hard constraints, described formally below. We use the

boolean 𝑝𝑖, 𝑗 to indicate that policy 𝜋𝑖 is placed on a sidecar

attached to service 𝑠 𝑗 and the boolean 𝑞𝑘,𝑗 to indicate that

sidecar 𝑇𝑘 is attached to 𝑠 𝑗 .

1. Policy placement constraints: For policy 𝜋𝑖 = (T ,𝐶,𝐴𝐸, 𝐴𝐼)
that is not a free-policy, then the egress section of the policy,

𝐴𝐸 , must execute at all possible source services, i.e., the set

S𝜋𝑖 . Similarly, the ingress section of the policy, 𝐴𝐼 , must

execute at all possible destination services, i.e., the set D𝜋𝑖 .

∧𝑠 𝑗 ∈S𝜋𝑖∪D𝜋𝑖 𝑝𝑖, 𝑗 if 𝜋𝑖 is not a free-policy (1)

2. Free-policy constraints: For a free-policy𝜋𝑖 = (T ,𝐶,𝐴𝐸, 𝐴𝐼),
both sections of the policy can be executed either at all ser-

vices in S𝜋𝑖 or at all services in D𝜋𝑖 .

∧𝑠 𝑗 ∈S𝜋𝑖 𝑝𝑖, 𝑗 ⊕ ∧𝑠 𝑗 ∈D𝜋𝑖 𝑝𝑖, 𝑗 if 𝜋𝑖 is a free-policy (2)

3. Sidecar placement constraints: Given a policy 𝜋 , at most

one sidecar can be attached to a service and that the sidecar

can only be one of 𝑇𝜋 .

𝑝𝑖, 𝑗 → ∃𝑘 : (𝑞𝑘,𝑗 ∧ ¬𝑞𝑘 ′, 𝑗∀𝑘 ′ ≠ 𝑘) (3)

𝑝𝑖, 𝑗 → ⊕𝑘∈𝑇𝜋𝑞𝑘,𝑗 (4)

Finally, Wire also takes a static cost model to assign each

sidecar 𝑇𝑠 a cost 𝐶 (𝑇𝑠) ≥ 0. Application owners may assign

different costs to available dataplanes to reflect different

priorities - for example, assigning a higher cost for a heavy

dataplane to avoid its performance overheads or a lower cost

to a more reliable dataplane. Given this cost function, Wire

adds the clause ¬𝑞 𝑗,𝑘 as a soft constraint for each service 𝑗

and sidecar𝑇𝑘 and assigns it the weight𝐶 (𝑇𝑘). We add a cost

for ¬𝑞 𝑗,𝑘 because minimizing the total cost of sidecars placed

is equivalent to maximizing cost of sidecars not placed.
We provide the generated encoding to a MaxSAT solver,

which produces assignments for: (i) where policies should be

executed, (ii) which sidecars are deployed at which services,

and (iii) for which policies the actions 𝐴𝐸 (𝐴𝐼) should be

executed on the Ingress (Egress). Using (iii), Wire re-writes

free policies bymoving the𝐴𝐸 (𝐴𝐼) actions to Ingress (Egress)

section of the policy, to construct the set of updated policies,

Π′
. It is for this updated set Π′

for which our solution is both

valid and optimal, as stated by the following theorem:

Theorem 1 (Correctness). Given an application graph𝐺 and
a set of policies Π, let Γ denote the policy placement generated
by Wire, along with optimized policies Π′. Then Γ is a valid
and optimal solution with respect to 𝐺 and policies Π′.

Proof Sketch. Our proof relies on the concept of a valid
placement set for a policy 𝜋 . We say a set of services 𝑆𝜋
is a valid placement set for 𝜋 if every CO that should be

processed by 𝜋 is processed by 𝜋 at one of the services in 𝑆𝜋 .

We call 𝑆𝜋 minimal if no subset 𝑆 ′ ⊂ 𝑆𝜋 is a valid placement

set for 𝜋 . Note that for free policies, there can be multiple

valid placement sets. Using this definition, we can prove the

above theorem in three steps.

First, we can prove by contradiction that that a optimal

policy placement Γ𝑂𝑝𝑡
must include a minimal valid place-

ment set for each policy 𝜋 ∈ Π. Intuitively, if that is not
the case, then we can find a subset 𝑆 ′ of the set of services
Γ𝑂𝑝𝑡

assigns 𝜋 to, that is also a valid placement set for 𝜋 –

contradicting the optimality of Γ𝑂𝑝𝑡
.

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Next, we can show that the generated constraints exhaust

all valid placement sets for all policies by exhausting all pos-

sible combinations of context patterns (whether it is 𝐶′𝑆 (.)
or 𝐶′𝑆) and policy types (whether it is free policy or not).

The above analysis proves that any solution to the MaxSAT

reduction will result in a valid placement set for each policy.

Since the MaxSAT maximizes the combined weight of the

satisfied soft clauses (constraints Eq. 3 and Eq. 4), its output

is the placement that minimizes the total cost of sidecars

placed. Hence, the final solution to the MaxSAT encoding

must be an optimal policy placement.

6 Dataplane Context Propagation
To enforce policies, Copper dataplanes need to operate on

COs’ run-time contexts. However, COs do not carry the con-

text information by default. In our example from Figure 1a,

the CO from Recommend to Catalog does not carry the con-

text to relate it to the CO from Frontend to Recommend that

triggered it. Hence, to apply policies over contexts, we need

a mechanism to add these run-time contexts to the COs.

To do so, we need to identify that two COs are related.

This can be done by correlating the COs via a unique trace
ID header that is propagated in the service calls (also known

as context propagation
3
). Next, we need to associate the

traceID of the outgoing request with the correct run-time

context, and do so without modifying applications. A layman

approach uses sidecar proxies to read and update context in

requests, but this adds overhead by requiring sidecars at all

services. Instead, we propose using eBPF [1] for transparent

context propagation in the dataplane.

The challenge is this requires parsing of L7 headers (e.g.,

gRPC [3] uses HTTP/2), which are typically compressed via

encoding [26] or indexing [30]. Such complex processing

is not amenable to eBPF verifier restrictions and may in-

crease latencies due to memory copy overhead with eBPF

maps during lookups. We overcome this challenge using two

clever ideas (Figure 7). First, we avoid stateful processing

overhead by directly looking for the encoded traceID header

instead of parsing each header. Second, we add the raw bytes

of the context in outgoing requests as a new CTX HTTP/2

frame instead of encoding them in HTTP/2 headers – vastly

simplifying our eBPF programs.

In order to avoid false positives when looking up the con-

text in the ctx_map, we use traceID header of a request as the

key (Figure 7) – traceID is generated by tracing libraries to

uniquely identify different requests, making collisions very

rare. To further reduce the probability of collisions, once a

request exits a service, its traceID is removed from ctx_map.

Another challenge is that for arbitrary service names, the

contexts can become very long. This is problematic because

eBPF programs in kernel currently limit the stack usage to

3
Context propagation is a standard practice for tracing and monitoring in

microservice applications, done using distributed tracing libraries [6].

Triggered
Request r2Propagate trace_id

propagate_ctx

find_headerfind_header

Payload
Incoming Request r1 from S

ctx_map
{trace-id: ctx}

{ctx} trace-id Payload{ctx+svc_id} trace-id

Add trace-id to
ctx mapping

Retrieve ctx of
associated trace-id

Outgoing Request r2 to U

Service S
Service T

Service U
Req r1 Req r2

Received
Request r1

parse_rx

eBPF

Figure 7. Leveraging eBPF hooks to propagate the run-time context.

The figure expands on the context propagation for service T, for a

request r1 sent from service S that triggers a request r2 to service U.

Each request shows the additional CTX frame and trace-id headers.

Program
(Attach Hook)

Description

add_socket

(sockops)

Track all open sockets on a service container. (Below

three programs are attached to these sockets).

parse_rx

(sk_skb)

Parse the incoming request to extract traceID and

context fields and save them in context_map.

find_header

(sk_msg)

Search for traceID header in the outgoing request and

make a tail call to propagate_ctx.

propagate_ctx

(sk_msg)

Lookup traceID of outgoing request in context_map to

get the context; add it to the outgoing request.

Table 1. Details of the used eBPF programs.

Application Workload Services
Boutique (OB) [12] Index Page 10

Hotel Reservation

(HR) [23]
Mixed Workload (25% for each of search,

recommend, user and reserve queries)

18

Social Network

(SN) [23]
Mixed Workload (60% for timelines, 30%

for users and 10% for posts)

26

Table 2. Experiment details for the three benchmark applications.

just 512B. Additionally, arbitrarily long contexts can add

overheads as they make request headers very bulky. Hence,

we encode each service with a service identifier and only tag

each CO with the context string 𝑠1𝑠2 . . . 𝑠𝑛 , used for policy

execution (§4.2). This allows us to support contexts of up to

100 services, enough to satisfy 96% of requests in production

traces [29]. However, this is not a fundamental limitation,

and with advances in eBPF-kernel programming supporting

bigger stack sizes, this limit can be easily increased.

We implement this dataplane add-on using cgroup socket

hooks. These hooks allow us to attach separate eBPF pro-

grams for sockets specific to a cgroup, ensuring isolation

between service containers. They also facilitate direct pro-

cessing of L7 payloads, independent of lower TCP/IP layer

concerns such as packet drops or out-of-order packets. We

employ four eBPF programs for path propagation (Table 1).

7 Evaluation
We implement a parser and compiler for Copper (6K LOC in

Rust), a prototype for the Wire control plane (2.2K Golang

LOC), where we implement policy placement (§5), and an

eBPF dataplane add-on (1.2K LOC). We perused GitHub re-

pos [14, 18], Slack channels for popular mesh frameworks,

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

Policy Description Target Service Sequences App Istio Copper
Policy Lines
(Δ SLoC)

Para-
meters

Policy
Lines

Argu-
ments

⋆ P1: Set ‘display’ header ‘true’
for all requests to catalog origi-
nating from frontend.

(frontend, catalog), (frontend, checkout, catalog), (frontend, recom-

mend, catalog)

OB 54

(8 lines in 2 ser-

vices)

13 8

(6.75×)
3

(4.33×)

P1: Set the ‘critical’ header to

‘true’ for all requests to geo and
rate originating from frontend.

(frontend, search, geo), (frontend, search, rate) HR 37

(4 lines in 1 ser-

vice)

9 8

(4.63×)
3

(3×)

P1: Set ‘write’ header ‘true’

for all requests to post-storage
originating from compose-post.

(compose-post, post-storage), (compose-post, user-timeline, post-

storage), (compose-post, home-timeline, post-storage)

SN 54

(8 lines in 2 ser-

vices)

13 8

(6.75×)
3

(4.33×)

P2: Route to v2 of a service if

request is from checkout; v1 if

from frontend

(frontend, cart), (frontend, currency), (frontend, catalog), (frontend,

ship), (frontend, checkout, cart), (frontend, checkout, currency), (fron-

tend, checkout, catalog), (frontend, checkout, ship)

OB 101

(4 lines in 1 ser-

vice)

28 36

(2.8×)
12

(2.33×)

P2: Route to v2 of a service if re-
quest is from search; v1 if from
frontend

(frontend, geo), (frontend, rate), (frontend, search, geo), (frontend,

search, rate)

HR 59

(4 lines in 1 ser-

vice)

16 18

(3.28×)
6

(2.67×)

⋆ P2: Route to v2 of a service

if request is from compose-post;
v1 if from frontend

(frontend, home-timeline), (frontend, user), (frontend, user-timeline),

(frontend, compose-post, home-timeline), (frontend, compose-post,

user), (frontend, compose-post, user-timeline)

SN 80

(12 lines in 3

services)

22 27

(2.96×)
9

(2.44×)

P3: Restrict access to database

services

(cart, redis-cache) OB 24 3 9

(2.6×)
3

(1×)
⋆ P3: Restrict access to data-

base services

(reserve, mongo), (reserve, memcached), (profile, mongo), (profile,

memcached), (geo, mongo), (rate, mongo), (rate, memcached), (rec-

ommend, mongo), (user, mongo)

HR 99 24 57

(1.7×)
24

(1×)

P3: Restrict access to database

services

(user, mongo), (user, memcached), (social-graph, mongo), (social-

graph, redis), (url, mongo), (url, memcached), (post-storage, mongo),

(post-storage, memcached), (user-timeline, redis), (user-timeline,

mongo), (user-mention, mongo), (user-mention, memcached)

SN 99 24 60

(1.65×)
24

(1×)

⋆ P4: Rate limit requests from

frontend to catalog
(frontend, catalog), (frontend, checkout, catalog), (frontend, recom-

mend, catalog)

OB 92

(8 lines in 2 ser-

vices)

35 16

(5.75×)
9

(3.89×)

Table 3. Study of representative policies on benchmark applications when using Istio vs Copper. The table shows the service chains targeted

by each policy, lines of code (LoC) and source lines of code (SLoC) changes needed for Istio and the corresponding lines and arguments

needed in Copper (with improvement over Istio shown in brackets) – Copper requires 1.65-6.75× fewer lines and 1-4.33× fewer arguments.

Star-marked policies are pictorially depicted in Figure 8.

and Istio’s documentation on common service mesh tasks [9],

and discussedwithmesh operators to identify four categories

of common policies. In what follows, we pick example poli-

cies for each category and evaluate them against popular

microservice benchmarks to answer these questions:

1. Does Copper help enable simple and expressive mesh

policies relative to today’s approaches? (§7.1)

2. How beneficial is Wire for real-world applications in low-

ering dataplane overhead and enabling the effective use of

multiple dataplanes compared to today’s best approaches?

And, how scalable is Wire? (§7.2)

3. What are the overheads of using the eBPF add-on? (§7.3)

7.1 Evaluating Copper
In this section, we will demonstrate how using ACTs, con-

texts and interfaces make Copper policies simpler and in-

tuitive. Our four policy categories - access control, traffic

management, header manipulation - are shown in Table 3,

along with (a) examples of each for the benchmark applica-

tions and service sequences to which those policies apply,

(b) relevant application subgraphs for a benchmark for each

policy category (Figure 8), and (c) the corresponding Copper

program for these subgraphs (Listings 5–8).

[P1]Header Manipulation P1 modifies the header for all
requests to a service that originated at frontend; i.e., the same

Frontend Search
Geo

Rate

Mongo

Mongo

Memcached

Profile
Mongo

Memcached

Reserve

Mongo

Memcached

Recommend Mongo

User Mongo

Frontend Compose
User-

timeline

Home-
timeline

User

Frontend
Checkout

Recommend
Catalog

HR - P3

SN - P2

OB - P1/P4

Figure 8. Application subgraphs for star-marked policies in Table 3.

Bold arrows indicate relevant requests for the policies.

1 import "interface.cui";
2 policy catalog_write (
3 act (RPCRequest request)
4 context ("frontendservice.*productcatalogservice")
5) {
6 [Ingress]
7 SetHeader(request, "display", "true");
8 }

Listing 5. P1 policy for OB benchmark

policy is applied to all service sequences shown in Table 3.

Using Istio, developers would need to write separate policies

for each sequence, but inCopper, programmers can specify
all sequences via a single context pattern (see Listing 5,

line 4 as an example), yielding 4.63–6.75× fewer policy LoC,

without source modifications.

[P2] Traffic Management P2 routes traffic to version v1

of a service if the request came directly from the frontend,

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1 import "interface.cui";
2 policy social_route (
3 act (RPCRequest request)
4 context ("frontend.*home-timeline")
5) {
6 [Egress]
7 if (GetContext(request) == "frontendhome-timeline") {
8 RouteToVersion(request, "home-timeline-service", "v1");
9 } else {
10 RouteToVersion(request, "home-timeline-service", "v2");
11 }
12 }

Listing 6. P2 policy for SN benchmark (Similar programs

for two other contexts – see Table 3)

1 import "interface.cui";
2 policy accessor_reservation (
3 act (RPCRequest request)
4 context ('rate.')
5) {
6 [Egress]
7 Allow(request, 'rate', 'mongo-rate');
8 Allow(request, 'rate', 'memcached-rate');
9 }

Listing 7. P3 policy for HR benchmark (Similar programs

for five other services – see Table 3)

1 import "interface.cui";
2 policy count_social (
3 act (RPCRequest request)
4 using (Counter counter, Timer timer)
5 context ("frontendservice.*productcatalogservice")
6) {
7 [Ingress]
8 Increment(counter);
9 if (IsTimeSince(timer, 60)) {
10 if (IsGreaterThan(counter, 1000)) {
11 Deny(request);
12 }
13 Reset(timer);
14 Reset(counter);
15 }
16 }

Listing 8. P4 policy for OB benchmark

and to version v2 if it came from another intermediate service

(see Table 3 and Figure 8). Similar to Figure 1a, in Istio, this

requires configuring and modifying intermediate services

(checkout for OB, search for HR, and compose-post for SN).

However, Copper can encode intermediate services in
context patterns (see Listing 6, line 4), leading to 2.8–3.28×
fewer policy LoC, without source modifications.

[P3] Simple Access Control P3 applies access control to

restrict access to each database service in the application,

requiring setting of ‘allow’ rules for each accessor-database

pair (shown in Table 3). Since these policies apply to service

pairs, Copper and Istio require same number of arguments.

Copper’s high-level programming abstractionsmake the
policies more concise (Listing 7), leading to 1.65-2.6× fewer

lines compared to Istio’s verbose YAML configurations.

[P4] Rate Limiting P4 applies a rate limit on the requests

from frontend to catalog. Istio does not expose an API to

use Envoy’s rate-limiting feature (§2) – hence, the program-

mer must write a low-level Envoy filter, requiring several

non-trivial parameters to be set as well as knowledge of En-

voy’s architecture. ACTs in Copper hide such low-level
details (see Listing 8); combined with high-level constructs

like conditionals (§4.2), Copper can express P4 in 5.75× fewer

LOC than Istio.

7.2 Evaluating Wire
In this section, we will demonstrate how the knowledge of

application graphs and policy semantics (to know whether a

policy is a free policy (§5)), leads to improved dataplane per-

formance. We will also show that Wire can further improve

the performance by leveraging multiple dataplanes, made

possible by the use of generic ACTs and Copper interfaces.

7.2.1 Evaluation on Benchmark Applications. We de-

ploy the three benchmarks ("OB", "HR", "SN" in Table 2)

on an 80-core Cloudlab [22] cluster (4X 20-core Intel Xeon

CPU@2.40GHz)with 64GB of RAMand connected via 10Gbps

Ethernet. We use another identical machine to generate load,

using the wrk2 [13] benchmarking tool with 10 threads.

Methodology We use two baselines:

1. Current control planes (Istio): Use Istio’s control plane
that deploys Istio-proxy at all services.

2. Optimized control planes (Istio++):Augment Istio with

the knowledge of application graphs to remove sidecars from

services where no policy is enforced.

We configure the above baselines and Wire for the pol-

icy classes described in §7.1. P3 would result in the same

sidecar deployment as P1, as both are free policies (§4.1.3).

Similarly, P4 would result in the same deployment as P2, as

both their actions can only be executed on Egress. Thus, we

only present the results using P1 and P2 below.

For a comprehensive evaluation, we extend the policies

listed in Table 3 to include all possible contexts originating
from the frontend service in each benchmark application. To

demonstrate Wire’s capability of leveraging multiple data-

planes, we also evaluate a combination of P1 and P2; thus,

in effect, we evaluate the following two policies:

Policy P1. Set header for requests originating at frontend.
Since database services typically do not perform header pro-

cessing, we only apply this policy to non-database services.

We add header manipulation rules to requests originating at

the frontend service per benchmark.

Policy P1+P2. Set header for requests originating at frontend
and route to version v1. We apply P1, like before, on non-

database services but P2 on all services. Since the bench-

marks only have one version for each service, for testing, we

implement this policy by configuring load-balancing on the

sidecars, with a weight of 100% to a single version.

We use two mesh dataplanes for our experiments – Istio-

proxy [10], a feature-rich but bulky dataplane, and Cilium-

proxy [7], a lightweight alternative with limited features. P1

can only be enforced by Istio-proxy as Cilium-proxy does not

support header-manipulation. P2, on the other hand, can be

enforced by both dataplanes, Istio-proxy and Cilium-proxy.

For each dataplane, we profile the sidecar and assign a cost

based on its overhead on the 99%-ile latency.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

50 100 150 200 250
Client Request Rate

200

400

600

800

1000

99
p

L
at

en
cy

(m
s) Boutique

1000 2000 3000
Client Request Rate

200

400

600

800

1000
Reservation

1000 2000 3000
Client Request Rate

200

400

600

800

1000
Social

Istio Istio++ Wire

(a) Policy P1

100 200 300
Client Request Rate

200

400

600

800

1000

99
p

L
at

en
cy

(m
s) Boutique

1000 2000 3000
Client Request Rate

200

400

600

800

1000
Reservation

1000 2000 3000
Client Request Rate

200

400

600

800

1000
Social

Istio Istio++ Wire

(b) Policy P1+P2

Figure 9. Tail Latencies against applied rate.

Boutique Reservation Social
Applications

0

10

20

30

40

50
CPU Usage (%)

Boutique Reservation Social
Applications

0

1

2

3

Memory (GB)

Istio Istio++ Wire

(a) Policy P1

Boutique Reservation Social
Applications

0

10

20

30

40

50
CPU Usage (%)

Boutique Reservation Social
Applications

0

1

2

3

Memory (GB)

Istio Istio++ Wire

(b) Policy P1+P2

Figure 10. CPU and Memory at operating throughput.

Latency and Throughput Figure 9 shows the 99%-ile tail

latencies of the applications versus applied load. For P1 (Fig-

ure 9a),Wire can consistently support higher through-
put (request rate) compared to both baselines, while en-
suring lower tail latencies. Wire’s supported request rate

is 1.67-3× and 1-1.25× higher than Istio and Istio++, respec-

tively, across the three benchmarks. At low loads, Wire’s tail

latencies are up to 2.6× and 1.9× lower than Istio and Istio++.

For P2 (Figure 9b),Wire can provide better performance
against both baselines - Wire can support 1.33-2.33× and

1.25-1.87× higher throughputs compared to Istio and Istio++,

respectively, across the three benchmarks. As we will discuss

below, the benefits against Istio++ increase in P2 because of

Wire’s capability to leverage multiple dataplanes.

CPU and Memory Usage Because Wire can reduce the

number of sidecars and, wherever possible, replace heavy

Istio-proxywith Cilium-proxy, it can lower CPU andmemory

usage. Figure 10 shows that across the two policies, using

Wire results in 2-39% lower CPU usage and 7-52% smaller

memory usage against the baselines.Wire’s resource benefits

are greater for larger microservice graphs – 2-17% lesser CPU

for OB versus 10-39% lesser for SN, as there is more room

for reducing the number of sidecars.

Key Takeaways We now note key observations from the

above results and delineate the underlying reasons. To elu-

cidate the observed benefits, we also provide the configura-

tions of sidecars for P1 and P1+P2 in Figure 11. The figure

shows where each of the baselines and Wire deploy Istio

sidecars for the two policies.

Even with a single dataplane, Wire can provide improvements
by using application graphs and free policy semantics. For
P1, all three control planes are forced to use Istio-proxy as

Cilium-proxy doesn’t support header manipulation. How-

ever, Istio deploys Istio-proxy at all services as it does not

know application dependencies or policy semantics – leading

Online Boutique Hotel Reservation Social Network

Po
lic

y
P1

Po
lic

y
P1

+P
2

Istio only Istio and Istio++ only Istio, Istio++ and Wire

Figure 11. Application graphs showing where each control plane

applies heavyweight Istio sidecars for policies P1 and P1+P2. Sin-

gle colored boxes show services where only Istio applies a side-

car, double-colored show where Istio and Istio++ apply, and three-

colored boxes show where all three control planes apply sidecars.

to 10, 18, and 26 sidecars for the OB, HR and SN benchmarks

respectively (see Figure 11). With the Istio++ baseline, a

few sidecars can be avoided as the set-header policy can be

enforced by running only at services that call other non-

database services. Thus Istio++ uses only 3, 2, and 6 Istio-

proxies for OB, HR, and SN, respectively (Figure 11). How-

ever, since the set-header policy is a free-policy (§5). Wire

uses this along with the graph to further optimize placement

and to deploy 3, 2, and 5 sidecars respectively for OB, HR,

and SN (Figure 11). This is the same as Istio++ for OB and

HR (hence the observed similar performance), but 1 fewer

sidecar for SN. In particular, Wire can avoid the sidecar at the

frontend service in SN – leading to less queueing at the ‘hot-

spot’ frontend service and yielding greater improvements

than the other two benchmarks.

Even when policies are constrained to run at Ingress/Egress,
Wire can efficiently leverage multiple dataplanes. For P1+P2,
the Istio baseline deploys sidecars at all services (similar

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

All
services

Hotspot
services

0

0.5

1

F
ra

ct
io

n

P1 P1+P2

Figure 12. Fraction of ser-

vices without sidecars for

policies P1 and P1+P2.

none ebpf all
0

10

20

30

L
at

en
cy

(m
s)

50 %ile

99 %ile

none ebpf all
0

4

8

12

C
P

U
U

sa
ge

(%
)

Figure 13.Overheads of eBPF add-on at
all services vs sidecar at all (represented

as ‘all’).

to P1). However, because the routing policy applies to all

possible contexts, in Istio++, sidecars are also needed at all

intermediate services, to propagate contexts (similar to the

example in Figure 1a). Thus, Istio++ deploys at all non-leaf

services in the graph – 4, 8, and 10 sidecars for OB, HR

and SN respectively (see Figure 11). With Wire, since the

eBPF add-on natively provides path propagation, we can still

deploy the same number of Istio-proxies as needed for P1

and only Cilium-proxies for P2 – thus providing significant

improvements over both Istio and Istio++.

7.2.2 Evaluation on Production Traces. We evaluate

the efficacy of the Wire control plane using a production

trace from Alibaba [29], containing service call traces for

several microservice applications. We take the top 750 most

popular applications and use their call traces to construct the

application graphs. We use the policy sets P1 and P1+P2 from

§7.2.1 and test Wire on each (application, policy) pair, assum-

ing a single dataplane available for use. Figure 12 shows that

the median fraction of services without sidecars is 0.64 and

0.5 for P1 and P1+P2, respectively. The figure also shows

that on average, Wire can avoid sidecars from 22% and 15%

of all hotspot services (services with more than 4 edges in

the graph) for P1 and P2, respectively. This is crucial because

we find that 30% of all requests are for such hotspot services.

7.2.3 Scalability of Wire. For the benchmark applica-

tions, Wire can find the optimal placement for the policy

sets P1 and P2 in less than 50ms. For the top 750 applications

from the production traces with application graphs ranging

from 24–329 services and 37–892 edges, Wire finds the opti-

mal placement in 565ms on average, and with a maximum

of 9.8s, across all graphs and the two policies.

7.3 eBPF Add-on Overheads
To evaluate the end-to-end overhead of eBPF, we repeat the

experiment from Figure 2. Our findings are shown in Fig-

ure 13 – attaching the eBPF add-on at all services, results in

a small end-to-end overhead of 90𝜇s on median latency and

240𝜇s on 99p latency. Note that this is significantly lower

than the overheads imposed by sidecars (causing ∼3× worse

tail latencies). Figure 13 also shows that the CPU overhead

of tracking context in eBPF is negligible. To further under-

stand the per-hop overhead, we run a gRPC echo server

microbenchmark. We run the server in a Kubernetes pod,

with the eBPF add-on attached. We then run multi-threaded

clients, with 4-32 threads, to send requests to the pod. We

find that the overheads imposed by the eBPF add-on are small

and constant across the number of clients - average per-hop

latency is inflated by just 8𝜇s. We test the eBPF add-on with

larger context sizes – even for the maximum supported con-

text length in our prototype of 100, the overheads are below

10𝜇s per-hop. In contrast, sidecars add roughly 1-3ms of

overhead per hop (see Figure 2, also in [32, 34]).

8 Concluding Remarks
We introduced a new service mesh framework with new con-

trol and dataplane building blocks that significantly improve

programming ease and policy enforcement overhead. We

offer a few concluding remarks about our approach.

Policies that don’t benefit from Wire Wire’s perfor-

mance improvements arise from its capability to optimize

the placement of free-policies (§5) - hence, if all policies sub-

mitted to Wire are non-free, Wire will not be able to remove

sidecars. A mesh use case for such a policy is mTLS authenti-

cation over service exchanges. Even in such cases, Wire can

still optimize dataplanes by choosing lightweight sidecars

at services that only require mTLS and heavier ones where

complex policy enforcement is needed.

Copper does not restrict inter-service communication
mechanism Enforcing Copper policies only relies on the

context being carried in the request - hence, the inter-service

communication mechanism does not affect policy enforce-

ment. However, the eBPF add-on (§6) must be modified as

per the protocol to propagate the context. Our prototype

considers gRPC-type communication that uses HTTP/2, but

can be easily extended to Thrift RPCs, message queues, etc.

Migration efforts for existing frameworks To add a

new dataplane to Copper, vendors must create an interface

file (with appropriate action annotations) and a compiler to

translate actions into low-level filter configurations. Note

that since the dataplane vendors are the ones who implement

specific features in the dataplane, they can decide if the im-

plementation would support the feature on both the ingress

and egress queues or not – hence, for most actions it should

be straightforward to decide the action annotations. With

Copper, the burden of annotating actions and compiling user

policies is offloaded to the dataplanes. We believe this is a

necessary overhead to enable a common control plane and

encourage future innovations by allowing vendors to create

their own compilers.

Conflicting Policies It is possible for Copper policies

to conflict – for instance, a RouteToVersion() action being

applied to a request that is also Deny()-ed. These conflicts

can occur in current mesh frameworks as well, and resolv-

ing them is a challenging but interesting future direction.

We believe that the proposed ACT abstractions and action

annotations can be handy tools in tackling this.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

Acknowledgements
We thank our shepherd, Aastha Mehta, and the anonymous

reviewers for their insightful comments and the members

of UTNS Lab for the regular discussions and feedback. This

research was supported by NSF Grants CNS-2214015 and

CNS-2023222.

A Artifact Appendix
A.1 Abstract
This artifact includes the source code for the implementa-

tion of the proposed system. It constitutes of two major

components: the Copper programming language and the

Wire control plane. It also includes the scripts required to

evaluate the system on a Cloudlab cluster. We open-source

this artifact to allow other researchers and developers to

use and improve it in their own work. In this appendix, we

briefly describe the steps to set up and run the cluster, and

to reproduce the results. More detailed instructions can be

found in the README files in the respective repositories.

A.2 Artifact check-list (meta-information)
• Program: We use the Social Network and Hotel Reservation

applications from the DeathStarBench [23] benchmark and

the Online Boutique application [12]

• Run-time environment: Our artifact was built and evalu-

ated on Ubuntu 20.04, running Linux version 5.15. The Linux

version is important as the eBPF add-on was built for this

version.

• Hardware: Our system does not require any specific hard-

ware to run but our evaluation scripts are developed for

Cloudlab clusters.

• Output: Evaluation of our system results in log files that

can be analyzed to get the numbers.

• Experiments: The experiments show the benefits of using

Copper (via LoC counts) and Wire (via latency and load

measurements) over baselines. Our evaluation was run over

Cloudlab.

• Howmuchdisk space required (approximately)?: Nearly
20GB of disk space is needed to run the benchmarks, and up

to 100MB to store the results.

• How much time is needed to prepare workflow (ap-
proximately)?: Preparing the workflow requires running

a few commands that run for up to an hour.

• How much time is needed to complete experiments
(approximately)?: We run a 60 second workload for sev-

eral request rates for three microservice benchmarks, each

repeated for all baselines. This can take up to 18 hours to

run.

• Publicly available?: The codebase is available at https:
//github.com/utnslab/copperlang for the language imple-

mentation and at https://github.com/utnslab/wire-mesh for

the Wire control plane.

• Code licenses (if publicly available)?: Our code is avail-

able under the MIT License.

• Archived (provideDOI)?: The Copper language implemen-

tation is archived at https://doi.org/10.5281/zenodo.14053526

and the Wire control plane is archived at https://doi.org/
10.5281/zenodo.14053530. Both are also available on GitHub,

where the code is maintained.

A.3 Description
A.3.1 How to access. The artifact is publicly available

on GitHub at https://github.com/utnslab/copperlang and

https://github.com/utnslab/wire-mesh. This repository con-

tains all of the source code and links (submodules) to depen-

dencies. The repository is also archived on Zenodo and can

be accessed at https://doi.org/10.5281/zenodo.14053530.

A.3.2 Hardware dependencies. While Copper-Wire it-

self are not tied to any particular hardware architecture,

our evaluation was run on xl170 Cloudlab nodes. We expect

similar trends to be observed on other Cloudlab nodes as

well.

A.3.3 Software dependencies. Our artifact was built and
evaluated on Ubuntu 20.04, running Linux version 5.15. The

Linux version is important as the eBPF add-on was built for

this version. Running the Copper language parser requires

Rust version 1.78.0.

A.4 Installation
The README.md in the repositories lists the detailed steps

to setup Wire mesh. Copper implementation only requires

Rust version 1.78.0 or above – no other setup is needed. A

brief summary of setting up Wire mesh is provided below.

1. Clone the repositories:

git clone https://github.com/utnslab/copperlang

git clone https://github.com/utnslab/wire-mesh

cd wire-mesh

git submodule update -init -recursive

2. Start a 5-node Cloudlab cluster with the small-lan

profile.

3. Setup the Cloudlab cluster (this requires setting envi-

ronment variables):

export CLOUDLAB_USERNAME=<username>

export CLOUDLAB_PROJECT=<project>

export CLOUDLAB_CLUSTER=<cluster>

cd wire-mesh

./cloudlab/config.sh <exp_name> 0 3 0

./cloudlab/client_config.sh <exp_name> 4

where exp_name is the name of the cloudlab experi-

ment, username is your Cloudlab username (found at

https://www.cloudlab.us/myaccount.php), project is
the Cloudlab project under which you are running

the experiment, and cluster is the full domain of the

specific Cloudlab cluster (e.g. utah.cloudlab.us). The

above will start a 4-node kubernetes cluster with node

0 as the control node.

https://github.com/utnslab/copperlang
https://github.com/utnslab/copperlang
https://github.com/utnslab/wire-mesh
https://doi.org/10.5281/zenodo.14053526
https://doi.org/10.5281/zenodo.14053530
https://doi.org/10.5281/zenodo.14053530
https://github.com/utnslab/copperlang
https://github.com/utnslab/wire-mesh
https://doi.org/10.5281/zenodo.14053530
https://www.cloudlab.us/myaccount.php

Copper and Wire: Bridging Expressiveness and Performance for Service Mesh Policies ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

4. Check that the cluster is up and running: On Cloudlab
node 0, run kubectl get nodes and check that all nodes

are in the Ready state.

A.5 Experiment workflow
A.5.1 Evaluating Copper. Run:
cargo run --bin copper-generate --features="generate-bin"

<path to .cup file>

A.5.2 Evaluating Wire.
1. Start the respectivemicroservice application: OnCloud-

lab node 0:
cd wire-mesh/scripts/deployment

cd <application (reservation/social/boutique)>

./deploy_p1.sh <(istio/hypothetical/wire)>

2. On your local node, run:

./cloudlab/run_experiment.sh <exp_name> <appl>

<local_dir> <workload_rate>

where exp_name is the name of the Cloudlab experi-

ment and appl is one of reservation, social or boutique.

A.6 Evaluation and expected results
The evaluation scripts provided with the repository will

generate graphs similar to the ones in the paper. There could

be slight variations due to hardware differences.

Results can vary significantly for some reasons:

1. Kubernetes cluster is not set up properly.

2. The service mesh framework (Istio/Cilium) are not

installed correctly.

References
[1] [n. d.]. eBPF. https://ebpf.io/.
[2] [n. d.]. Envoy Proxy. https://www.envoyproxy.io/.
[3] [n. d.]. gRPC: High-Performance RPC Framework. https://grpc.io/.
[4] [n. d.]. Istio. https://istio.io/.
[5] [n. d.]. Linkerd. https://linkerd.io/.
[6] [n. d.]. OpenTelemetry. https://opentelemetry.io/.
[7] 2023. Cilium Proxy. https://github.com/cilium/proxy.
[8] 2023. Cilium Service Mesh. https://docs.cilium.io/en/v1.13/network/

servicemesh/index.html.
[9] 2023. Istio Tasks - Documentation. https://istio.io/latest/docs/tasks/.
[10] 2023. istio/proxy. https://github.com/istio/proxy.
[11] 2023. NGINX Service Mesh. https://www.nginx.com/products/nginx-

service-mesh.
[12] 2023. Online Boutique Microservices Demo Application. https://

github.com/GoogleCloudPlatform/microservices-demo.
[13] 2023. wrk2. https://github.com/giltene/wrk2.
[14] 2024. Cilium Github Repo. https://github.com/cilium/cilium.

[15] 2024. Cilium Service Mesh. https://developer.hashicorp.com/consul/
docs/connect.

[16] 2024. Configuration of Envoy Rate-limiting

in Istio. https://github.com/istio/istio/blob/
f434191be1877d6aa4af01b5e6caec8c344c82bc/samples/ratelimit/
local-rate-limit-service.yaml.

[17] 2024. gRPC Proxyless Service Mesh. https://cloud.google.com/traffic-
director/docs/proxyless-overview.

[18] 2024. istio/istio. https://github.com/istio/istio.
[19] 2024. Open Policy Agent - Rego. https://www.openpolicyagent.org/

docs/latest/policy-language/.

[20] Sachin Ashok, P. Brighten Godfrey, and Radhika Mittal. 2021. Leverag-

ing ServiceMeshes as a NewNetwork Layer. In Proceedings of the Twen-
tieth ACM Workshop on Hot Topics in Networks (Virtual Event, United
Kingdom) (HotNets ’21). Association for Computing Machinery, New

York, NY, USA, 229–236. https://doi.org/10.1145/3484266.3487379
[21] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xinhao Kong,

Thomas Anderson, Matthew Lentz, Xiaowei Yang, and Danyang Zhuo.

2023. Remote Procedure Call as a Managed System Service. In 20th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 23). USENIX Association, Boston, MA, 141–159. https:
//www.usenix.org/conference/nsdi23/presentation/chen-jingrong

[22] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Opera-

tion of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[23] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,

Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jack-

son, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen,

Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo

Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delim-

itrou. 2019. An Open-Source Benchmark Suite for Microservices and

Their Hardware-Software Implications for Cloud & Edge Systems. In

Proceedings of the Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Prov-
idence, RI, USA) (ASPLOS ’19). Association for Computing Machinery,

New York, NY, USA, 3–18. https://doi.org/10.1145/3297858.3304013
[24] Karuna Grewal, P. Brighten Godfrey, and Justin Hsu. 2023. Expressive

Policies For Microservice Networks. In Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks (Cambridge, MA, USA) (HotNets
’23). Association for Computing Machinery, New York, NY, USA, 280–

286. https://doi.org/10.1145/3626111.3628181
[25] Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore,

Brighten Godfrey, and Sujata Banerjee. 2023. Murphy: Performance

Diagnosis of Distributed Cloud Applications. In Proceedings of the ACM
SIGCOMM 2023 Conference (New York, NY, USA) (ACM SIGCOMM ’23).
Association for Computing Machinery, New York, NY, USA, 438–451.

https://doi.org/10.1145/3603269.3604877
[26] David A. Huffman. 1952. A Method for the Construction of Minimum-

Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

https://doi.org/10.1109/JRPROC.1952.273898
[27] Chu Min Li and Felip Manyà. 2021. MaxSAT, Hard and Soft Con-

straints. In Handbook of Satisfiability. https://api.semanticscholar.org/
CorpusID:28884712

[28] Xing Li, Yan Chen, Zhiqiang Lin, Xiao Wang, and Jim Hao Chen. 2021.

Automatic Policy Generation for Inter-Service Access Control of Mi-

croservices. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, 3971–3988. https://www.usenix.org/conference/
usenixsecurity21/presentation/li-xing

[29] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping

Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing

Microservice Dependency and Performance: Alibaba Trace Analysis.

In Proceedings of the ACM Symposium on Cloud Computing (Seattle,

WA, USA) (SoCC ’21). Association for Computing Machinery, New

York, NY, USA, 412–426. https://doi.org/10.1145/3472883.3487003
[30] Roberto Peon and Herve Ruellan. 2015. HPACK: Header Compression

for HTTP/2. RFC 7541. https://doi.org/10.17487/RFC7541
[31] Prateek Sahu, Lucy Zheng, Marco Bueso, Shijia Wei, Neeraja J. Yad-

wadkar, and Mohit Tiwari. 2023. Sidecars on the Central Lane: Impact

of Network Proxies on Microservices. arXiv:2306.15792 [cs.DC]

[32] Harshit Saokar, Soteris Demetriou, Nick Magerko, Max Kontorovich,

Josh Kirstein, Margot Leibold, Dimitrios Skarlatos, Hitesh Khandelwal,

https://ebpf.io/
https://www.envoyproxy.io/
https://grpc.io/
https://istio.io/
https://linkerd.io/
https://opentelemetry.io/
https://github.com/cilium/proxy
https://docs.cilium.io/en/v1.13/network/servicemesh/index.html
https://docs.cilium.io/en/v1.13/network/servicemesh/index.html
https://istio.io/latest/docs/tasks/
https://github.com/istio/proxy
https://www.nginx.com/products/nginx-service-mesh
https://www.nginx.com/products/nginx-service-mesh
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/giltene/wrk2
https://github.com/cilium/cilium
https://developer.hashicorp.com/consul/docs/connect
https://developer.hashicorp.com/consul/docs/connect
https://github.com/istio/istio/blob/f434191be1877d6aa4af01b5e6caec8c344c82bc/samples/ratelimit/local-rate-limit-service.yaml
https://github.com/istio/istio/blob/f434191be1877d6aa4af01b5e6caec8c344c82bc/samples/ratelimit/local-rate-limit-service.yaml
https://github.com/istio/istio/blob/f434191be1877d6aa4af01b5e6caec8c344c82bc/samples/ratelimit/local-rate-limit-service.yaml
https://cloud.google.com/traffic-director/docs/proxyless-overview
https://cloud.google.com/traffic-director/docs/proxyless-overview
https://github.com/istio/istio
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://doi.org/10.1145/3484266.3487379
https://www.usenix.org/conference/nsdi23/presentation/chen-jingrong
https://www.usenix.org/conference/nsdi23/presentation/chen-jingrong
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3626111.3628181
https://doi.org/10.1145/3603269.3604877
https://doi.org/10.1109/JRPROC.1952.273898
https://api.semanticscholar.org/CorpusID:28884712
https://api.semanticscholar.org/CorpusID:28884712
https://www.usenix.org/conference/usenixsecurity21/presentation/li-xing
https://www.usenix.org/conference/usenixsecurity21/presentation/li-xing
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.17487/RFC7541
https://arxiv.org/abs/2306.15792

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, & Aditya Akella

and Chunqiang Tang. 2023. ServiceRouter: Hyperscale and Minimal

Cost Service Mesh at Meta. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). USENIX Association,

Boston, MA, 969–985. https://www.usenix.org/conference/osdi23/
presentation/saokar

[33] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and

Christina Delimitrou. 2021. Sinan: ML-based and QoS-aware resource

management for cloud microservices. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 167–181.

https://doi.org/10.1145/3445814.3446693
[34] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang,

Xuan Kelvin Zou, Xiongchun Duan, Peng He, Arvind Krishnamurthy,

Matthew Lentz, Danyang Zhuo, and Ratul Mahajan. 2022. Dissecting

Service Mesh Overheads. https://doi.org/10.48550/ARXIV.2207.00592

https://www.usenix.org/conference/osdi23/presentation/saokar
https://www.usenix.org/conference/osdi23/presentation/saokar
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.48550/ARXIV.2207.00592

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Current Service Mesh Frameworks
	2.2 Drawbacks in current frameworks
	2.3 Related Work

	3 An Overview of Our Approach
	4 The Copper Language
	4.1 Copper Building Blocks
	4.2 Copper Policy Programs

	5 The Wire Control Plane
	6 Dataplane Context Propagation
	7 Evaluation
	7.1 Evaluating Copper
	7.2 Evaluating Wire
	7.3 eBPF Add-on Overheads

	8 Concluding Remarks
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

