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ABSTRACT
Distributed applications on the cloud are being developed and de-
ployed as microservices as opposed to the monolithic architecture.
Service Meshes have emerged as a way of specifying communication
policies between microservices. Service Meshes have the potential
to abstract the networking requirements of distributed applications
from the application logic. However, current service mesh frame-
works introduce significant performance and resource overheads.
We study the overheads of service meshes and make a case for re-
designing both the control plane and data plane for service meshes.
First, we propose the notion of Application Defined Middleboxes,
which makes it possible for the mesh control planes to reduce the
overheads by optimizing where to implement application policies.
Second, we demonstrate preliminary ideas on accelerating the data
plane to further reduce the overheads.

CCS CONCEPTS
• Networks → Network services; In-network processing; Net-
work management; Cloud computing; • Computer systems or-
ganization → Cloud computing.
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1 INTRODUCTION
Applications are becoming more and more distributed in nature to

deal with the ever-increasing scale and to support agile development.
Cloud applications are no exception - applications on the cloud are
moving from a monolithic architecture to microservice deployments -
where the application is developed in the form of hundreds of loosely-
coupled services. This enables enhanced scalability, accelerated
development cycles, and language and framework heterogeneity for
the application [13].

The microservice architecture introduces additional interfaces that
can be configured to realize complex policies for telemetry, tracing,
traffic management and authorization. In addition, these policies
often require fine-grained control over layer 7 requests. However,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ApPLIED 2023, June 19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0128-3/23/06.
https://doi.org/10.1145/3584684.3597267

implementing these networking policies in the application code is
difficult to configure, deploy, and update.

Service meshes provide a way to lessen the burden on applica-
tion developers by abstracting out all microservice communication
policies into a separate process that can be deployed alongside the
application container. This proxy is typically deployed as a container
itself, commonly known as the sidecar. A control plane accepts
user policies and pushes them to the dataplane sidecars. Several
open-source service meshes [3, 4, 7] use this architecture.

Today, the de-facto approach is to “inject” a sidecar into the
microservice graph for each service container. The rationale is that it
limits the blast radius in case of a sidecar failing, isolates the traffic
of different services and scales sidecar resources proportionally with
the traffic load to the application. Unfortunately, this architecture
also imposes serious performance bottlenecks on the applications. In
our experiments, we found that using sidecars increases CPU usage
by 37-63%, memory usage by 37-41% and leads to 1.54-2.84×
higher end-to-end application latencies.

We observe that the idea of extracting communication policies
outside of the application and into the network has been explored
before for lower layer policies with network middleboxes (e.g. NATs,
Firewalls, IDS, Proxy Caches). Traditional middleboxes operate on
L3/L4 policies while service meshes usually cater to L7 policies.
Besides the difference in target network layers, they also differ in
how they couple policies with the applications. We identify that
traditional middleboxes operate on the principle of Decoupled En-
forcement and Placement - communication policies are run in mid-
dleboxes that are decoupled from the compute servers, as they are
deployed in separate servers or dedicated switches and routers. The
sidecars in current mesh frameworks can essentially be thought of
as middleboxes with the crucial difference that current mesh frame-
works couple Enforcement and Placement - all the policies of a
service are consolidated in a single sidecar container coupled with
the specific service they are serving.

We argue that mesh policies can be thought of being run in
application-defined middleboxes (ADMs) that form the service mesh
layer underlying the application containers. Unlike the current side-
car model and traditional middleboxes, ADMs operate on the princi-
ple of Decoupled Enforcement - Coupled Placement. Our key insight
is that while it is important for the ADMs to be coupled with the
services ; the policies apply on the traffic and can hence, be enforced
on either the sender service or the receiver service. Decoupling en-
forcement allows flexbility in choosing whether to enforce a given
policy on the sender or the receiver. We show that this observation
can be used to reduce the total number of ADMs needed, which in
turn, can help in reducing overheads (Section 4).

Figure 1 shows the distinction between the three approaches (side-
cars, traditional middleboxes, and ADMs) on a toy example using
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(c) Application Defined Middleboxes (Decoupled Enforcement - Coupled Place-
ment): Policy enforcement decoupled from the services, while middleboxes are
coupled with services. Allows for per-service policy enforcement at either the
sender or receiver, resulting in fewer containers and reduced processing over-
heads.

Figure 1: Comparison of ADMs against today’s sidecars and traditional
middleboxes.

three services and three policies. Service A sends requests to services
B and C. Additionally, the traffic from A to C can be categorized
into two types of requests with the first type requiring Policy 1 and
the second type requiring Policy 2. Meanwhile, traffic to service B

requires Policies 1 and 3. In Figure 1a, each sidecar runs one of the
policies and the sidecars are coupled with the application containers.
Note that the sidecar reconstructs payloads for all requests, irrespec-
tive of whether a policy is to be run on them or not, e.g. sidecar at
A reconstructs requests meant for policy 2. Figure 1b shows mid-
dleboxes separated from the application containers, each running
one of the policies (we assume the policies are very different in
nature, requiring three different middleboxes to implement them).
Further, the request might need to traverse multiple middleboxes,
e.g. request from A to B goes to middlebox enforcing policy 3 then to
the middlebox enforcing policy 1. Finally, with ADMs in Figure 1c,
policies for B (1 and 3) are decoupled from B and instead run at the
ADM coupled with A - leading to an overall fewer number of ADMs.

Our proposal is to tackle the performance overheads of service
meshes from both aspects – the control plane and the data plane. For

the control plane, we highlight the usecase for a mesh framework
that operates on the principle of Decoupled Enforcement - Coupled
Placement. We outline the design of a mesh control plane that can
use the ADM abstraction to cleverly assign policies to ADMs so as to
minimize the number of ADMs needed, which can lead to reduced
overheads. While we envision that an ADM-based control plane
can reduce overheads by minimizing the number of extra ADMs
needed, the overheads of a single ADM can only be reduced by
accelerating the dataplane. We call for a novel eBPF-accelerated
dataplane proxy to function as ADM for this new control plane.
While the use of eBPF for accelerated networking has been explored
before [10, 11, 14, 15], mesh proxies are co-located on the same host
as the service container and hence, the huge amount of intra-host
network traffic serves as a perfect usecase to explore eBPF-based
intra-host acceleration.

Section 2 provides a comprehensive background on microservices
and service meshes. In Section 3, we demonstrate performance
bottlenecks in current service meshes. Section 4 describes the ADM
principle and outlines the design of an ADM-powered control plane.
Section 5 describes the motivation to use eBPF as a tool to design
an accelerated data plane.

2 BACKGROUND
2.1 Microservices
Conventionally, applications have been built and deployed as a sin-
gle large monolithic executable. However, recently, applications are
increasingly being built and deployed in the form of a large number
of small, loosely-coupled services [13] - popularly referred to as
microservices and typically deployed in separate isolated containers.
In contrast to the earlier monolithic applications, the microservice
architecture allows for increased development and deployment flexi-
bility Each of the small microservices can be independently scaled
and deployed as per their individual requirements. Further, separate
teams can work on these microservices asynchronously leading to
accelerated development cycles. This flexibility is crucial to deal
with the ever-growing scale and demand of modern applications.

2.2 Application Layer Policies
With this growing trend of applications adopting the microservice
architecture and becoming distributed in nature, application com-
munication is becoming an intricate part of the application function-
ality [9]. Application communication involves enforcing policies
related to various tasks including but not limited to service discovery,
traffic load balancing, rate limiting, access control and authorization.
For example, an access control policy could enforce that no request
from service ‘A’ be allowed at service ‘B’.

Many of these policies are enforced at the granularity of applica-
tion requests. Even traffic between the same pair of microservices
may experience different policies depending on the request. For
example, a Key-Value Store (KVS) server may want to enforce
different load balancing policies for RPC ‘GetKey(key)’ and RPC
‘DeleteKey(key)’ invoked by the same KVS client. Therefore, these
policies can only be enforced at the application layer and existing
methods of specifying and enforcing policies at switches or routers
are unsuitable. Implementing these policies within the application



Invited Paper: Towards Efficient Microservice Communication ApPLIED 2023, June 19, 2023, Orlando, FL, USA

code complicates application logic and imposes heavy burden on
application developers to implement each desired policy.

2.3 Service Meshes
Service Meshes have emerged as a way of extracting communica-
tion policies outside of the application logic, running in a separate
process (called the ‘sidecar’) alongside the application containers.
Since microservice architectures are deployed as containers, natu-
rally sidecar processes are also deployed in containers, with each
service container getting a dedicated sidecar. All traffic to and from
the service is then diverted via the sidecar container. Notably, the
sidecars are transparent to the application. These sidecar containers
can be thought to form a ‘mesh’ of service proxies for application
communication, and hence the term ‘service mesh’.

These sidecars form the data plane of the service mesh, while a
separate control plane is responsible for taking in application poli-
cies and configuring the sidecars accordingly. Current mesh control
planes require the policies to be provided in the form of YAML
configuration files. Several commercial service mesh frameworks
follow this design [3, 6, 7]. The control plane accepts this YAML file
as the application policy and appropriately configures the different
sidecars in the deployed application.

3 SERVICE MESH OVERHEADS
3.1 Setup
Methodology: We run the microservice application under three
settings - with Istio as the service mesh, with NGINX as the service
mesh, and without any service mesh at all. We choose Istio as it is one
of the most commonly used production mesh, based on Envoy [2],
and as a comparison, we choose NGINX service mesh, based on
the NGINX [5] proxy as a non-Envoy alternative. We run these
experiments on a Cloudlab [12] machine, with four core Intel Xeon
CPU at 2.0 GHz and 64GB RAM.
Workloads and Metrics: We use the Hotel-Reservation benchmark
from the DeathStar suite [13]. We use the wrk2 [8] load generator
provided with the benchmark to generate a mixed workload of dif-
ferent type of requests and evaluate three metrics: (i) CPU usage, (ii)
Memory usage, and (iii) End-to-end application latencies.

3.2 End-to-end Latencies
Figure 2 shows the latency plots for the three settings. We observe
that deployments using service mesh exhibit significantly higher end-
to-end application latencies. In our experiments, we found that using
Istio results in 2.84× and NGINX results in 1.54× higher median
latency compared to the no mesh case.

We claim that the higher latencies are a direct consequence of
the additional processing imposed by sidecars. Each request from a
sender service to the receiving service requires (i) additional traver-
sals of the kernel stack, (ii) additional memory copies from userspace
to kernel space and vice-versa, and (iii) queueing can happen at the
sidecars because of the processing times. The effect of the queueing
can be seen on the tail latencies (99.9 and 99.99 %-ile latencies)
where both Istio and NGINX result in more than 2× higher end-to-
end latencies compared to the no mesh case. Our experiments are
consistent with other studies on service meshes overheads [17].
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Figure 2: Overheads imposed on median and tail latencies because of
current mesh frameworks
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Figure 4: Memory Usage.

The better performance of NGINX compared to Istio can be
attributed to the fact that Istio uses Envoy, which provides much
more features, compared to NGINX, making it bulkier.

3.3 CPU Usage
For each configuration (No Mesh, NGINX and Istio), we run the
workload for 40 seconds and measure the CPU utilization every 1
second. Figure 3 shows the CPU usage for the three settings. We
observe that Istio consumes 63% more CPU resources on average
and NGINX service mesh consumes 37% more CPU resources on
average, compared to the No Mesh case. This additional CPU usage
is again because of the additional processing at the sidecars. These
CPU processing overheads are likely to increase as the microservice
application graph gets bigger (more services leading to more sidecar
containers) and denser (more services invoked for each request).

3.4 Memory Consumption
Figure 4 shows the additional memory needed for deployments
using service mesh, over the memory needed just for the application
deployment without sidecar containers. The red dashed line shows
the memory usage of the server when the application was deployed
in the No Mesh case. We observe that deploying the application
with Istio mesh leads to 41% more memory usage compared to the
No Mesh case, while deploying with NGINX leads to 37% more
memory usage.

4 APPLICATION DEFINED MIDDLEBOXES
An ADM is a container in the service mesh, that is responsible for
executing one or more policies on the traffic to/from a particular
service. An ADM is different from a sidecar in that not every service
is required to have an ADM and not all traffic to/from a service is
required to be passed through the ADM.
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4.1 Coupled Placement
One of the primary reasons current service meshes followed the side-
car model was to make the operational cost of service meshes low.
The traditional middlebox approach was to have a common shared
middlebox to perform a specific functionality. However, using a
common middlebox for multiple applications poses two challenges.
Firstly, policies from different services may impact each other, com-
plicating policy management. Secondly, shared middleboxes can
lead to queueing and head-of-line blocking. Additionally, a common
middlebox becomes a single point of failure. Hence, the alternative
approach to couple a sidecar with each service container and letting
the sidecar handle all the traffic to the service is preferred. We call
this mode of deployment, where a sidecar is coupled with the service
that it serves, Coupled Placement.

ADMs also follow the same principle. Therefore, each ADMs
is coupled with a specific service, and handles only the traffic sent
to/from the service. However, not all services may have an ADM, as
we show next.

4.2 Decoupled Enforcement
The primary objective of service mesh is to enforce communication
policies for microservice applications. We make the observation that
most policies can be enforced either on the ingress of the receiver
or the egress of the sender. For example, access control policies
can be implemented either as admission control components at the
ingress of the target service, or at the egress of all services that could
potentially send traffic to the given service. Similarly, load balancing
policies can be enforced either at the ingress of a specific service
to balance load among its replicas or at the egress of all services
that send traffic to this service. The only exceptions to the above
observation are policies pertaining to external traffic or protocol-
specific policies, e.g. setting the max timeout duration for a TCP
connection can only be done at the connecting TCP endpoint. For
external traffic, policies must be enforced at the ingress (egress) of
the specific microservice that receives (sends) external traffic.

This observation drives the principle of Decoupled Enforcement.
In our proposal, each policy is run in an ADM. For any given applica-
tion policy, the control plane can dynamically choose to implement it
at either at the ADM of the receiver, or at the ADM of the sender ser-
vice. In contrast, existing mesh frameworks can only support static
policy enforcement at the receiver or the sender, depending on the
policy. For example, Figure 1c shows that decoupling the policies of
B can allow us to implement Policy 3 at A instead. However, existing
frameworks can only implement Policy 3 at the receiver and are
hence, forced to have an additional sidecar at B.

4.3 A Framework to Reduce Overheads
We propose a clean-slate microservice communication framework
that makes use of ADMs. Each policy must be implemented in one
or more ADMs and each ADM must be associated with exactly one
service. Therefore, a single ADM can only handle policies pertaining
to the ingress or egress traffic of a particular service.

We can now formulate the placement of a policy in an ADM
and the association of an ADM as an optimization problem. The
objective of the optimization problem is to minimize the total number
of ADMs, with the constraints being as follows:
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Figure 5: Impact of reducing ADMs on end-to-end latencies.
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Figure 6: eBPF accelerated communication between ADM and service
container

• An ADM must only handle policies pertaining to either the out-
going traffic or incoming traffic for exactly one service.

• A policy must either be placed on the ingress of the receiver
ADM, or the egress of all sender ADMs.

• Policies pertaining to external traffic must be enforced on the
ADM of the service receiving/sending the traffic.

• Policies that can only be implemented on the ingress or only on
the egress, should be mentioned as correctness constraints.
By solving this optimization problem, the control plane can re-

duce the number of ADMs needed to satisfy a given set of application
policies - thereby reducing the processing and resource overheads of
the additional containers in existing frameworks.

We conduct a preliminary study to demonstrate the benefits of
reducing the number of ADMs. We use the same testbed and setup as
mentioned in Section 3. As a case study, consider a policy that aims
to rate limit requests at database services. In our deployment, out of
18 total services, 9 were database services (using either memcached
or mongodb instances). Figure 5 shows a comparison of end-to-end
latencies for two configurations:
• Partial Mesh: Sidecars only at compute (non-database) services.
• Full Mesh (Default): Sidecars at all services.

We observe that consolidating policies at fewer sidecars and
removing the redundant sidecars can lead to immense reduction
in overheads. However, how to perform this reduction automatically
and correctly given the user policies is an open challenge and the
ADM principle is one step in this direction.

5 eBPF-ACCELERATED DATA PLANE
While the control plane mentioned earlier in Section 4.3 reduces
overheads to some extent by reducing the number of mesh containers
needed, there might still be several ADMs. Hence, we also explore
and present preliminary ideas for an accelerated ADM that can
further reduce the latency and CPU overheads.
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As shown in Section 3.2, the additional network traversals and
request processing can lead to higher application latencies. Since
each ADM is coupled with its specific service, and both deployed on
the same node, we can further optimize the communication between
each service-ADM pair.

The sockops hook point provided by eBPF [1] opens up an inter-
esting usecase here. It allows for a zero-copy redirection between
two sockets inside the kernel without traversing the whole network
stack. We maintain an eBPF map of active sockets, that gets updated
at connection establishment and is later used for forwarding packets
to the destination socket directly.

We implement a eBPF socket redirection module and compare
the round-trip time of an echo server for messages up to 10KB in
Figure 6. The takeaway is that using eBPF socket redirection pro-
vides good speedups. We observe a consistent 1.4-1.6× speedup
against raw TCP sockets. This speedup is especially useful for ser-
vice meshes, where all traffic between a service container and its
corresponding ADM (if present) passes through the host network
stack. Further, each user request can invoke several of these ser-
vices and therefore, any speedup in intra-host networking will have
cascading speedups on end-to-end latencies. However, full integra-
tion of the eBPF-accelerated data path warrants more research on
multiple fronts. First, fault tolerance schemes are needed to decide
what happens when either the service container or the ADM fails.
Second, isolation mechanisms are needed when multiple policies
are consolidated into a single ADM.

6 FUTURE WORK
In this paper, we highlighted the problem of performance bottlenecks
and resource overheads in current mesh frameworks. We propose
Application Defined Middleboxes as a novel logical framework to
think of service meshes, and highlight how the principle of Decou-
pled Enforcement, Coupled Placement can enable control planes to
optimally place policies in ADMs so as to reduce the number of
userspace containers.

The future work is to develop and implement such a control plane.
Crucially, the control plane needs semantic information about var-
ious policies (whether a policy is a protocol-specific policy or not,
whether a policy can be implemented at ingress and egress both,
etc) to optimize placement. The current YAML file-based approach
for specifying policies may not be ideal, necessitating a redesign
of the control plane interface. Secondly, the above discussion is
mostly focused on RPC-style communication, which has been car-
rying the majority (upto 95%) of traffic in modern datacenters [16].
However, for other inter-service communications - for example,
event-based messaging, the constraints on policy implementation
must be revisited. Depending on the specific inter-service commu-
nication protocol, some policies may be suitable for the Decoupled
Enforcement paradigm while other policies will require constraints
on their implementation that can be used as mentioned in Section 4.3.
Lastly, our proposed control plane may open more avenues to opti-
mize resource management - the placement of ADMs can lead to
load imbalance, hence, along with the correctness constraints, and
performance objectives in Section 4.3, the resource usage of ADMs
must also be taken into account.

Finally, simple sidecars are not enough to be used as ADMs and
to reduce the overheads of the interaction of service containers and
ADMs, an accelerated dataplane must be designed. We motivate the
usecase for eBPF hooks for service meshes and list challenges on
isolation and fault tolerance for future work.
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